Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -308,73 +308,59 @@ async def predict(image):
|
|
308 |
if isinstance(image, np.ndarray):
|
309 |
image = Image.fromarray(image)
|
310 |
|
311 |
-
# 快速檢查是否有多個狗
|
312 |
dogs = await detect_multiple_dogs(image)
|
313 |
|
314 |
-
if len(dogs)
|
315 |
-
|
316 |
-
breed = topk_breeds[0]
|
317 |
-
description = get_dog_description(breed)
|
318 |
-
formatted_description = format_description(description, breed)
|
319 |
-
|
320 |
-
if top1_prob >= 0.5:
|
321 |
-
return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
322 |
-
elif 0.2 <= top1_prob < 0.5:
|
323 |
-
explanation = f"""
|
324 |
-
**Detected with moderate confidence. Here are the top 3 possible breeds:**
|
325 |
-
|
326 |
-
1. **{topk_breeds[0]}** ({topk_probs_percent[0]})
|
327 |
-
2. **{topk_breeds[1]}** ({topk_probs_percent[1]})
|
328 |
-
3. **{topk_breeds[2]}** ({topk_probs_percent[2]})
|
329 |
|
330 |
-
Click on a button below to view more information about each breed.
|
331 |
-
"""
|
332 |
-
return explanation, image, gr.update(visible=True, value=f"More about {topk_breeds[0]}"), gr.update(visible=True, value=f"More about {topk_breeds[1]}"), gr.update(visible=True, value=f"More about {topk_breeds[2]}")
|
333 |
-
else:
|
334 |
-
return "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
335 |
-
|
336 |
-
# 多狗情況
|
337 |
explanations = []
|
338 |
-
visible_buttons = []
|
339 |
annotated_image = image.copy()
|
340 |
draw = ImageDraw.Draw(annotated_image)
|
341 |
-
font = ImageFont.
|
342 |
|
343 |
for i, (cropped_image, _, box) in enumerate(dogs, 1):
|
344 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
345 |
|
346 |
-
|
347 |
-
draw.
|
|
|
|
|
|
|
|
|
348 |
|
349 |
if top1_prob >= 0.5:
|
350 |
breed = topk_breeds[0]
|
351 |
description = get_dog_description(breed)
|
352 |
-
|
353 |
-
|
354 |
explanation = f"""
|
355 |
**Dog {i}: Detected with moderate confidence. Here are the top 3 possible breeds:**
|
356 |
|
357 |
1. **{topk_breeds[0]}** ({topk_probs_percent[0]})
|
358 |
2. **{topk_breeds[1]}** ({topk_probs_percent[1]})
|
359 |
3. **{topk_breeds[2]}** ({topk_probs_percent[2]})
|
|
|
|
|
|
|
|
|
360 |
"""
|
361 |
-
explanations.append(explanation)
|
362 |
-
visible_buttons.extend([f"More about Dog {i}: {topk_breeds[0]}", f"More about Dog {i}: {topk_breeds[1]}", f"More about Dog {i}: {topk_breeds[2]}"])
|
363 |
-
else:
|
364 |
-
explanations.append(f"**Dog {i}**: The image is unclear or the breed is not in the dataset.")
|
365 |
|
366 |
-
|
367 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
368 |
|
369 |
except Exception as e:
|
370 |
return f"An error occurred: {e}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
371 |
|
372 |
-
|
373 |
-
breed_name = breed.split("More about ")[-1].split(": ")[-1] # Handle both single and multi-dog cases
|
374 |
-
description = get_dog_description(breed_name)
|
375 |
-
return format_description(description, breed_name)
|
376 |
-
|
377 |
-
# Gradio interface setup
|
378 |
with gr.Blocks(css="""
|
379 |
.container { max-width: 900px; margin: auto; padding: 20px; }
|
380 |
.gr-box { border-radius: 15px; }
|
@@ -391,17 +377,8 @@ with gr.Blocks(css="""
|
|
391 |
output_image = gr.Image(label="Annotated Image")
|
392 |
|
393 |
output = gr.Markdown(label="Prediction Results")
|
394 |
-
|
395 |
-
with gr.Row():
|
396 |
-
btn1 = gr.Button("View More 1", visible=False)
|
397 |
-
btn2 = gr.Button("View More 2", visible=False)
|
398 |
-
btn3 = gr.Button("View More 3", visible=False)
|
399 |
|
400 |
-
input_image.change(predict, inputs=input_image, outputs=[output, output_image
|
401 |
-
|
402 |
-
btn1.click(show_details, inputs=btn1, outputs=output)
|
403 |
-
btn2.click(show_details, inputs=btn2, outputs=output)
|
404 |
-
btn3.click(show_details, inputs=btn3, outputs=output)
|
405 |
|
406 |
gr.Examples(
|
407 |
examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
|
|
|
308 |
if isinstance(image, np.ndarray):
|
309 |
image = Image.fromarray(image)
|
310 |
|
|
|
311 |
dogs = await detect_multiple_dogs(image)
|
312 |
|
313 |
+
if len(dogs) == 0:
|
314 |
+
return "No dogs detected. Please upload a clear image of a dog.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
explanations = []
|
|
|
317 |
annotated_image = image.copy()
|
318 |
draw = ImageDraw.Draw(annotated_image)
|
319 |
+
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 20)
|
320 |
|
321 |
for i, (cropped_image, _, box) in enumerate(dogs, 1):
|
322 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
323 |
|
324 |
+
# 繪製更醒目的邊框和標籤
|
325 |
+
draw.rectangle(box, outline="red", width=5)
|
326 |
+
label = f"Dog {i}"
|
327 |
+
label_size = draw.textsize(label, font=font)
|
328 |
+
draw.rectangle([box[0], box[1], box[0] + label_size[0], box[1] + label_size[1]], fill="red")
|
329 |
+
draw.text((box[0], box[1]), label, fill="white", font=font)
|
330 |
|
331 |
if top1_prob >= 0.5:
|
332 |
breed = topk_breeds[0]
|
333 |
description = get_dog_description(breed)
|
334 |
+
explanation = f"**Dog {i}: {breed}**\n\n{format_description(description, breed)}"
|
335 |
+
else:
|
336 |
explanation = f"""
|
337 |
**Dog {i}: Detected with moderate confidence. Here are the top 3 possible breeds:**
|
338 |
|
339 |
1. **{topk_breeds[0]}** ({topk_probs_percent[0]})
|
340 |
2. **{topk_breeds[1]}** ({topk_probs_percent[1]})
|
341 |
3. **{topk_breeds[2]}** ({topk_probs_percent[2]})
|
342 |
+
|
343 |
+
[More about {topk_breeds[0]}](#breed_{i}_1)
|
344 |
+
[More about {topk_breeds[1]}](#breed_{i}_2)
|
345 |
+
[More about {topk_breeds[2]}](#breed_{i}_3)
|
346 |
"""
|
|
|
|
|
|
|
|
|
347 |
|
348 |
+
explanations.append(explanation)
|
349 |
+
|
350 |
+
final_explanation = "\n\n---\n\n".join(explanations)
|
351 |
+
|
352 |
+
# 添加隱藏的詳細信息部分
|
353 |
+
for i, (_, _, _) in enumerate(dogs, 1):
|
354 |
+
for j, breed in enumerate(topk_breeds, 1):
|
355 |
+
description = get_dog_description(breed)
|
356 |
+
final_explanation += f"\n\n<div id='breed_{i}_{j}' style='display:none;'>\n\n{format_description(description, breed)}\n\n</div>"
|
357 |
+
|
358 |
+
return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
359 |
|
360 |
except Exception as e:
|
361 |
return f"An error occurred: {e}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
362 |
|
363 |
+
# Gradio 界面設置
|
|
|
|
|
|
|
|
|
|
|
364 |
with gr.Blocks(css="""
|
365 |
.container { max-width: 900px; margin: auto; padding: 20px; }
|
366 |
.gr-box { border-radius: 15px; }
|
|
|
377 |
output_image = gr.Image(label="Annotated Image")
|
378 |
|
379 |
output = gr.Markdown(label="Prediction Results")
|
|
|
|
|
|
|
|
|
|
|
380 |
|
381 |
+
input_image.change(predict, inputs=input_image, outputs=[output, output_image])
|
|
|
|
|
|
|
|
|
382 |
|
383 |
gr.Examples(
|
384 |
examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
|