Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -3,15 +3,15 @@ import numpy as np
|
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
import gradio as gr
|
6 |
-
|
7 |
from torchvision.models import efficientnet_v2_m, EfficientNet_V2_M_Weights
|
8 |
from torchvision.ops import nms, box_iou
|
9 |
import torch.nn.functional as F
|
10 |
from torchvision import transforms
|
11 |
from PIL import Image, ImageDraw, ImageFont, ImageFilter
|
12 |
-
from dog_database import get_dog_description
|
13 |
from breed_health_info import breed_health_info
|
14 |
from breed_noise_info import breed_noise_info
|
|
|
15 |
from scoring_calculation_system import UserPreferences
|
16 |
from recommendation_html_format import format_recommendation_html, get_breed_recommendations
|
17 |
from history_manager import UserHistoryManager
|
@@ -42,19 +42,19 @@ model_yolo = YOLO('yolov8l.pt')
|
|
42 |
history_manager = UserHistoryManager()
|
43 |
|
44 |
dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
|
45 |
-
"Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog",
|
46 |
"Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres",
|
47 |
"Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever",
|
48 |
-
"Chihuahua", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter",
|
49 |
"English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd",
|
50 |
"German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees",
|
51 |
-
"Greater_Swiss_Mountain_Dog", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier",
|
52 |
"Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel",
|
53 |
"Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa",
|
54 |
"Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound",
|
55 |
"Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian",
|
56 |
"Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed",
|
57 |
-
"Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog",
|
58 |
"Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel",
|
59 |
"Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner",
|
60 |
"Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier",
|
@@ -68,6 +68,7 @@ dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staff
|
|
68 |
"Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet",
|
69 |
"Wire-Haired_Fox_Terrier"]
|
70 |
|
|
|
71 |
class MultiHeadAttention(nn.Module):
|
72 |
|
73 |
def __init__(self, in_dim, num_heads=8):
|
@@ -122,15 +123,19 @@ class BaseModel(nn.Module):
|
|
122 |
logits = self.classifier(attended_features)
|
123 |
return logits, attended_features
|
124 |
|
125 |
-
|
126 |
-
num_classes =
|
127 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
128 |
-
model = BaseModel(num_classes=num_classes, device=device)
|
129 |
|
130 |
-
|
131 |
-
model.
|
132 |
|
133 |
-
#
|
|
|
|
|
|
|
|
|
|
|
134 |
model.eval()
|
135 |
|
136 |
# Image preprocessing function
|
@@ -149,24 +154,38 @@ def preprocess_image(image):
|
|
149 |
return transform(image).unsqueeze(0)
|
150 |
|
151 |
async def predict_single_dog(image):
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
with torch.no_grad():
|
154 |
-
|
155 |
-
logits =
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
171 |
dogs = []
|
172 |
boxes = []
|
@@ -193,7 +212,6 @@ async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.45):
|
|
193 |
|
194 |
return dogs
|
195 |
|
196 |
-
|
197 |
def non_max_suppression(boxes, iou_threshold):
|
198 |
keep = []
|
199 |
boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
|
@@ -218,52 +236,6 @@ def calculate_iou(box1, box2):
|
|
218 |
return iou
|
219 |
|
220 |
|
221 |
-
async def process_single_dog(image):
|
222 |
-
"""Process a single dog image and return breed predictions and HTML output."""
|
223 |
-
top1_prob, topk_breeds, relative_probs = await predict_single_dog(image)
|
224 |
-
|
225 |
-
# Case 1: Low confidence - unclear image or breed not in dataset
|
226 |
-
if top1_prob < 0.2:
|
227 |
-
error_message = format_warning_html(
|
228 |
-
'The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.'
|
229 |
-
)
|
230 |
-
initial_state = {
|
231 |
-
"explanation": error_message,
|
232 |
-
"image": None,
|
233 |
-
"is_multi_dog": False
|
234 |
-
}
|
235 |
-
return error_message, None, initial_state
|
236 |
-
|
237 |
-
breed = topk_breeds[0]
|
238 |
-
|
239 |
-
# Case 2: High confidence - single breed result
|
240 |
-
if top1_prob >= 0.45:
|
241 |
-
description = get_dog_description(breed)
|
242 |
-
html_content = format_single_dog_result(breed, description)
|
243 |
-
initial_state = {
|
244 |
-
"explanation": html_content,
|
245 |
-
"image": image,
|
246 |
-
"is_multi_dog": False
|
247 |
-
}
|
248 |
-
return html_content, image, initial_state
|
249 |
-
|
250 |
-
# Case 3: Medium confidence - show top 3 breeds with relative probabilities
|
251 |
-
description = get_dog_description(breed)
|
252 |
-
breeds_html = format_multiple_breeds_result(
|
253 |
-
topk_breeds=topk_breeds,
|
254 |
-
relative_probs=relative_probs,
|
255 |
-
color='#34C759', # 使用單狗顏色
|
256 |
-
index=1, # 因為是單狗處理,所以index為1
|
257 |
-
get_dog_description=get_dog_description
|
258 |
-
)
|
259 |
-
|
260 |
-
initial_state = {
|
261 |
-
"explanation": breeds_html,
|
262 |
-
"image": image,
|
263 |
-
"is_multi_dog": False
|
264 |
-
}
|
265 |
-
return breeds_html, image, initial_state
|
266 |
-
|
267 |
|
268 |
def create_breed_comparison(breed1: str, breed2: str) -> dict:
|
269 |
breed1_info = get_dog_description(breed1)
|
@@ -353,21 +325,46 @@ async def predict(image):
|
|
353 |
top1_prob, topk_breeds, relative_probs = await predict_single_dog(cropped_image)
|
354 |
combined_confidence = detection_confidence * top1_prob
|
355 |
|
356 |
-
# Format results based on confidence
|
357 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
358 |
dogs_info += format_error_message(color, i+1)
|
359 |
-
elif top1_prob >= 0.45:
|
360 |
-
breed = topk_breeds[0]
|
361 |
-
description = get_dog_description(breed)
|
362 |
-
dogs_info += format_single_dog_result(breed, description, color)
|
363 |
-
else:
|
364 |
-
dogs_info += format_multiple_breeds_result(
|
365 |
-
topk_breeds,
|
366 |
-
relative_probs,
|
367 |
-
color,
|
368 |
-
i+1,
|
369 |
-
get_dog_description
|
370 |
-
)
|
371 |
|
372 |
# Wrap final HTML output
|
373 |
html_output = format_multi_dog_container(dogs_info)
|
@@ -422,6 +419,7 @@ def show_details_html(choice, previous_output, initial_state):
|
|
422 |
def main():
|
423 |
with gr.Blocks(css=get_css_styles()) as iface:
|
424 |
# Header HTML
|
|
|
425 |
gr.HTML("""
|
426 |
<header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
|
427 |
<h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'>
|
@@ -467,6 +465,7 @@ def main():
|
|
467 |
history_component=history_component
|
468 |
)
|
469 |
|
|
|
470 |
# 4. 最後創建歷史記錄標籤頁
|
471 |
create_history_tab(history_component)
|
472 |
|
|
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
import gradio as gr
|
6 |
+
import time
|
7 |
from torchvision.models import efficientnet_v2_m, EfficientNet_V2_M_Weights
|
8 |
from torchvision.ops import nms, box_iou
|
9 |
import torch.nn.functional as F
|
10 |
from torchvision import transforms
|
11 |
from PIL import Image, ImageDraw, ImageFont, ImageFilter
|
|
|
12 |
from breed_health_info import breed_health_info
|
13 |
from breed_noise_info import breed_noise_info
|
14 |
+
from dog_database import get_dog_description
|
15 |
from scoring_calculation_system import UserPreferences
|
16 |
from recommendation_html_format import format_recommendation_html, get_breed_recommendations
|
17 |
from history_manager import UserHistoryManager
|
|
|
42 |
history_manager = UserHistoryManager()
|
43 |
|
44 |
dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
|
45 |
+
"Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog", "Bichon_Frise",
|
46 |
"Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres",
|
47 |
"Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever",
|
48 |
+
"Chihuahua", "Dachshund", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter",
|
49 |
"English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd",
|
50 |
"German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees",
|
51 |
+
"Greater_Swiss_Mountain_Dog","Havanese", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier",
|
52 |
"Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel",
|
53 |
"Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa",
|
54 |
"Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound",
|
55 |
"Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian",
|
56 |
"Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed",
|
57 |
+
"Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog", "Shiba_Inu",
|
58 |
"Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel",
|
59 |
"Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner",
|
60 |
"Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier",
|
|
|
68 |
"Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet",
|
69 |
"Wire-Haired_Fox_Terrier"]
|
70 |
|
71 |
+
|
72 |
class MultiHeadAttention(nn.Module):
|
73 |
|
74 |
def __init__(self, in_dim, num_heads=8):
|
|
|
123 |
logits = self.classifier(attended_features)
|
124 |
return logits, attended_features
|
125 |
|
126 |
+
# Initialize model
|
127 |
+
num_classes = len(dog_breeds)
|
128 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
129 |
|
130 |
+
# Initialize base model
|
131 |
+
model = BaseModel(num_classes=num_classes, device=device).to(device)
|
132 |
|
133 |
+
# Load model path
|
134 |
+
model_path = "124_best_model_dog.pth"
|
135 |
+
checkpoint = torch.load(model_path, map_location=device)
|
136 |
+
|
137 |
+
# Load model state
|
138 |
+
model.load_state_dict(checkpoint["base_model"], strict=False)
|
139 |
model.eval()
|
140 |
|
141 |
# Image preprocessing function
|
|
|
154 |
return transform(image).unsqueeze(0)
|
155 |
|
156 |
async def predict_single_dog(image):
|
157 |
+
"""
|
158 |
+
Predicts the dog breed using only the classifier.
|
159 |
+
Args:
|
160 |
+
image: PIL Image or numpy array
|
161 |
+
Returns:
|
162 |
+
tuple: (top1_prob, topk_breeds, relative_probs)
|
163 |
+
"""
|
164 |
+
image_tensor = preprocess_image(image).to(device)
|
165 |
+
|
166 |
with torch.no_grad():
|
167 |
+
# Get model outputs (只使用logits,不需要features)
|
168 |
+
logits = model(image_tensor)[0] # 如果model仍返回tuple,取第一個元素
|
169 |
+
probs = F.softmax(logits, dim=1)
|
170 |
+
|
171 |
+
# Classifier prediction
|
172 |
+
top5_prob, top5_idx = torch.topk(probs, k=5)
|
173 |
+
breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]]
|
174 |
+
probabilities = [prob.item() for prob in top5_prob[0]]
|
175 |
+
|
176 |
+
# Calculate relative probabilities
|
177 |
+
sum_probs = sum(probabilities[:3]) # 只取前三個來計算相對概率
|
178 |
+
relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]]
|
179 |
+
|
180 |
+
# Debug output
|
181 |
+
print("\nClassifier Predictions:")
|
182 |
+
for breed, prob in zip(breeds[:5], probabilities[:5]):
|
183 |
+
print(f"{breed}: {prob:.4f}")
|
184 |
+
|
185 |
+
return probabilities[0], breeds[:3], relative_probs
|
186 |
+
|
187 |
+
|
188 |
+
async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
|
189 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
190 |
dogs = []
|
191 |
boxes = []
|
|
|
212 |
|
213 |
return dogs
|
214 |
|
|
|
215 |
def non_max_suppression(boxes, iou_threshold):
|
216 |
keep = []
|
217 |
boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
|
|
|
236 |
return iou
|
237 |
|
238 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
|
240 |
def create_breed_comparison(breed1: str, breed2: str) -> dict:
|
241 |
breed1_info = get_dog_description(breed1)
|
|
|
325 |
top1_prob, topk_breeds, relative_probs = await predict_single_dog(cropped_image)
|
326 |
combined_confidence = detection_confidence * top1_prob
|
327 |
|
328 |
+
# Format results based on confidence with error handling
|
329 |
+
try:
|
330 |
+
if combined_confidence < 0.2:
|
331 |
+
dogs_info += format_error_message(color, i+1)
|
332 |
+
elif top1_prob >= 0.45:
|
333 |
+
breed = topk_breeds[0]
|
334 |
+
description = get_dog_description(breed)
|
335 |
+
# Handle missing breed description
|
336 |
+
if description is None:
|
337 |
+
# 如果沒有描述,創建一個基本描述
|
338 |
+
description = {
|
339 |
+
"Name": breed,
|
340 |
+
"Size": "Unknown",
|
341 |
+
"Exercise Needs": "Unknown",
|
342 |
+
"Grooming Needs": "Unknown",
|
343 |
+
"Care Level": "Unknown",
|
344 |
+
"Good with Children": "Unknown",
|
345 |
+
"Description": f"Identified as {breed.replace('_', ' ')}"
|
346 |
+
}
|
347 |
+
dogs_info += format_single_dog_result(breed, description, color)
|
348 |
+
else:
|
349 |
+
# 修改format_multiple_breeds_result的調用,包含錯誤處理
|
350 |
+
dogs_info += format_multiple_breeds_result(
|
351 |
+
topk_breeds,
|
352 |
+
relative_probs,
|
353 |
+
color,
|
354 |
+
i+1,
|
355 |
+
lambda breed: get_dog_description(breed) or {
|
356 |
+
"Name": breed,
|
357 |
+
"Size": "Unknown",
|
358 |
+
"Exercise Needs": "Unknown",
|
359 |
+
"Grooming Needs": "Unknown",
|
360 |
+
"Care Level": "Unknown",
|
361 |
+
"Good with Children": "Unknown",
|
362 |
+
"Description": f"Identified as {breed.replace('_', ' ')}"
|
363 |
+
}
|
364 |
+
)
|
365 |
+
except Exception as e:
|
366 |
+
print(f"Error formatting results for dog {i+1}: {str(e)}")
|
367 |
dogs_info += format_error_message(color, i+1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
368 |
|
369 |
# Wrap final HTML output
|
370 |
html_output = format_multi_dog_container(dogs_info)
|
|
|
419 |
def main():
|
420 |
with gr.Blocks(css=get_css_styles()) as iface:
|
421 |
# Header HTML
|
422 |
+
|
423 |
gr.HTML("""
|
424 |
<header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
|
425 |
<h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'>
|
|
|
465 |
history_component=history_component
|
466 |
)
|
467 |
|
468 |
+
|
469 |
# 4. 最後創建歷史記錄標籤頁
|
470 |
create_history_tab(history_component)
|
471 |
|