DawnC commited on
Commit
2c0def4
โ€ข
1 Parent(s): 8c21c35

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +44 -21
app.py CHANGED
@@ -176,6 +176,7 @@ async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4):
176
  dogs.append((cropped_image, confidence, xyxy))
177
  return dogs
178
 
 
179
  async def process_single_dog(image):
180
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
181
  if top1_prob < 0.2:
@@ -183,7 +184,8 @@ async def process_single_dog(image):
183
  "explanation": "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.",
184
  "buttons": [],
185
  "show_back": False,
186
- "image": None
 
187
  }
188
  return initial_state["explanation"], None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
189
 
@@ -196,7 +198,8 @@ async def process_single_dog(image):
196
  "explanation": formatted_description,
197
  "buttons": [],
198
  "show_back": False,
199
- "image": image
 
200
  }
201
  return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
202
  else:
@@ -216,7 +219,8 @@ async def process_single_dog(image):
216
  "explanation": explanation,
217
  "buttons": buttons,
218
  "show_back": True,
219
- "image": image
 
220
  }
221
  return explanation, image, buttons[0], buttons[1], buttons[2], gr.update(visible=True), initial_state
222
 
@@ -230,20 +234,20 @@ async def predict(image):
230
 
231
  if len(dogs) <= 1:
232
  return await process_single_dog(image)
233
-
234
  color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
235
  explanations = []
236
  buttons = []
237
  annotated_image = image.copy()
238
  draw = ImageDraw.Draw(annotated_image)
239
  font = ImageFont.load_default()
240
-
241
  for i, (cropped_image, _, box) in enumerate(dogs):
242
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
243
  color = color_list[i % len(color_list)]
244
  draw.rectangle(box, outline=color, width=3)
245
  draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
246
-
247
  breed = topk_breeds[0]
248
  if top1_prob >= 0.5:
249
  description = get_dog_description(breed)
@@ -256,7 +260,7 @@ async def predict(image):
256
  buttons.extend([gr.update(visible=True, value=f"Dog {i+1}: More about {breed}") for breed in topk_breeds[:3]])
257
  else:
258
  explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
259
-
260
  final_explanation = "\n\n".join(explanations)
261
  if buttons:
262
  final_explanation += "\n\nClick on a button to view more information about the breed."
@@ -264,7 +268,9 @@ async def predict(image):
264
  "explanation": final_explanation,
265
  "buttons": buttons,
266
  "show_back": True,
267
- "image": annotated_image
 
 
268
  }
269
  return (final_explanation, annotated_image,
270
  buttons[0] if len(buttons) > 0 else gr.update(visible=False),
@@ -277,7 +283,9 @@ async def predict(image):
277
  "explanation": final_explanation,
278
  "buttons": [],
279
  "show_back": False,
280
- "image": annotated_image
 
 
281
  }
282
  return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
283
  except Exception as e:
@@ -286,6 +294,7 @@ async def predict(image):
286
  return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
287
 
288
 
 
289
  # async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4, merge_threshold=0.5):
290
  # results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
291
  # dogs = []
@@ -446,24 +455,38 @@ def show_details(choice, previous_output, initial_state):
446
  breed = choice.split("More about ")[-1]
447
  description = get_dog_description(breed)
448
  formatted_description = format_description(description, breed)
449
- initial_state["explanation"] = formatted_description
 
450
  return formatted_description, gr.update(visible=True), initial_state
451
  except Exception as e:
452
  error_msg = f"An error occurred while showing details: {e}"
453
- print(error_msg) # ๆทปๅŠ ๆ—ฅ่ชŒ่ผธๅ‡บ
454
  return error_msg, gr.update(visible=True), initial_state
455
 
456
  def go_back(state):
457
- buttons = state.get("buttons", [])
458
- return (
459
- state["explanation"],
460
- state.get("image", None),
461
- buttons[0] if len(buttons) > 0 else gr.update(visible=False),
462
- buttons[1] if len(buttons) > 1 else gr.update(visible=False),
463
- buttons[2] if len(buttons) > 2 else gr.update(visible=False),
464
- gr.update(visible=state["show_back"]),
465
- state
466
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
467
 
468
  with gr.Blocks() as iface:
469
  gr.HTML("<h1 style='text-align: center;'>๐Ÿถ Dog Breed Classifier ๐Ÿ”</h1>")
 
176
  dogs.append((cropped_image, confidence, xyxy))
177
  return dogs
178
 
179
+
180
  async def process_single_dog(image):
181
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
182
  if top1_prob < 0.2:
 
184
  "explanation": "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.",
185
  "buttons": [],
186
  "show_back": False,
187
+ "image": None,
188
+ "is_multi_dog": False
189
  }
190
  return initial_state["explanation"], None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
191
 
 
198
  "explanation": formatted_description,
199
  "buttons": [],
200
  "show_back": False,
201
+ "image": image,
202
+ "is_multi_dog": False
203
  }
204
  return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
205
  else:
 
219
  "explanation": explanation,
220
  "buttons": buttons,
221
  "show_back": True,
222
+ "image": image,
223
+ "is_multi_dog": False
224
  }
225
  return explanation, image, buttons[0], buttons[1], buttons[2], gr.update(visible=True), initial_state
226
 
 
234
 
235
  if len(dogs) <= 1:
236
  return await process_single_dog(image)
237
+
238
  color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
239
  explanations = []
240
  buttons = []
241
  annotated_image = image.copy()
242
  draw = ImageDraw.Draw(annotated_image)
243
  font = ImageFont.load_default()
244
+
245
  for i, (cropped_image, _, box) in enumerate(dogs):
246
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
247
  color = color_list[i % len(color_list)]
248
  draw.rectangle(box, outline=color, width=3)
249
  draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
250
+
251
  breed = topk_breeds[0]
252
  if top1_prob >= 0.5:
253
  description = get_dog_description(breed)
 
260
  buttons.extend([gr.update(visible=True, value=f"Dog {i+1}: More about {breed}") for breed in topk_breeds[:3]])
261
  else:
262
  explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
263
+
264
  final_explanation = "\n\n".join(explanations)
265
  if buttons:
266
  final_explanation += "\n\nClick on a button to view more information about the breed."
 
268
  "explanation": final_explanation,
269
  "buttons": buttons,
270
  "show_back": True,
271
+ "image": annotated_image,
272
+ "is_multi_dog": True,
273
+ "dogs_info": explanations
274
  }
275
  return (final_explanation, annotated_image,
276
  buttons[0] if len(buttons) > 0 else gr.update(visible=False),
 
283
  "explanation": final_explanation,
284
  "buttons": [],
285
  "show_back": False,
286
+ "image": annotated_image,
287
+ "is_multi_dog": True,
288
+ "dogs_info": explanations
289
  }
290
  return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
291
  except Exception as e:
 
294
  return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
295
 
296
 
297
+
298
  # async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4, merge_threshold=0.5):
299
  # results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
300
  # dogs = []
 
455
  breed = choice.split("More about ")[-1]
456
  description = get_dog_description(breed)
457
  formatted_description = format_description(description, breed)
458
+ initial_state["current_description"] = formatted_description # ไฟๅญ˜็•ถๅ‰้กฏ็คบ็š„ๆ่ฟฐ
459
+ initial_state["show_back"] = True # ็ขบไฟ back ๆŒ‰้ˆ•ๅฏ่ฆ‹
460
  return formatted_description, gr.update(visible=True), initial_state
461
  except Exception as e:
462
  error_msg = f"An error occurred while showing details: {e}"
463
+ print(error_msg)
464
  return error_msg, gr.update(visible=True), initial_state
465
 
466
  def go_back(state):
467
+ if state.get("is_multi_dog", False):
468
+ # ๆขๅพฉๅˆฐๅคš็‹—ๆƒ…ๅขƒ็š„ๅˆๅง‹็‹€ๆ…‹
469
+ buttons = state.get("buttons", [])
470
+ return (
471
+ state["explanation"],
472
+ state["image"],
473
+ buttons[0] if len(buttons) > 0 else gr.update(visible=False),
474
+ buttons[1] if len(buttons) > 1 else gr.update(visible=False),
475
+ buttons[2] if len(buttons) > 2 else gr.update(visible=False),
476
+ gr.update(visible=False), # ้šฑ่— back ๆŒ‰้ˆ•
477
+ state
478
+ )
479
+ else:
480
+ # ๅ–ฎ็‹—ๆƒ…ๅขƒ๏ผŒไธ้œ€่ฆ็‰นๆฎŠ่™•็†
481
+ return (
482
+ state["explanation"],
483
+ state["image"],
484
+ gr.update(visible=False),
485
+ gr.update(visible=False),
486
+ gr.update(visible=False),
487
+ gr.update(visible=False),
488
+ state
489
+ )
490
 
491
  with gr.Blocks() as iface:
492
  gr.HTML("<h1 style='text-align: center;'>๐Ÿถ Dog Breed Classifier ๐Ÿ”</h1>")