PawMatchAI / scoring_calculation_system.py
DawnC's picture
Update scoring_calculation_system.py
31c1299 verified
raw
history blame
77.4 kB
from dataclasses import dataclass
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
import traceback
import math
@dataclass
class UserPreferences:
"""使用者偏好設定的資料結構"""
living_space: str # "apartment", "house_small", "house_large"
yard_access: str # "no_yard", "shared_yard", "private_yard"
exercise_time: int # minutes per day
exercise_type: str # "light_walks", "moderate_activity", "active_training"
grooming_commitment: str # "low", "medium", "high"
experience_level: str # "beginner", "intermediate", "advanced"
time_availability: str # "limited", "moderate", "flexible"
has_children: bool
children_age: str # "toddler", "school_age", "teenager"
noise_tolerance: str # "low", "medium", "high"
space_for_play: bool
other_pets: bool
climate: str # "cold", "moderate", "hot"
health_sensitivity: str = "medium"
barking_acceptance: str = None
training_commitment: str = "medium" # "low", "medium", "high" - 訓練投入程度
living_environment: str = "ground_floor" # "ground_floor", "with_elevator", "walk_up" - 居住環境細節
def __post_init__(self):
"""在初始化後運行,用於設置派生值"""
if self.barking_acceptance is None:
self.barking_acceptance = self.noise_tolerance
@staticmethod
def calculate_breed_bonus(breed_info: dict, user_prefs: 'UserPreferences') -> float:
"""計算品種額外加分"""
bonus = 0.0
temperament = breed_info.get('Temperament', '').lower()
# 1. 壽命加分(最高0.05)
try:
lifespan = breed_info.get('Lifespan', '10-12 years')
years = [int(x) for x in lifespan.split('-')[0].split()[0:1]]
longevity_bonus = min(0.05, (max(years) - 10) * 0.01)
bonus += longevity_bonus
except:
pass
# 2. 性格特徵加分(最高0.15)
positive_traits = {
'friendly': 0.05,
'gentle': 0.05,
'patient': 0.05,
'intelligent': 0.04,
'adaptable': 0.04,
'affectionate': 0.04,
'easy-going': 0.03,
'calm': 0.03
}
negative_traits = {
'aggressive': -0.08,
'stubborn': -0.06,
'dominant': -0.06,
'aloof': -0.04,
'nervous': -0.05,
'protective': -0.04
}
personality_score = sum(value for trait, value in positive_traits.items() if trait in temperament)
personality_score += sum(value for trait, value in negative_traits.items() if trait in temperament)
bonus += max(-0.15, min(0.15, personality_score))
# 3. 適應性加分(最高0.1)
adaptability_bonus = 0.0
if breed_info.get('Size') == "Small" and user_prefs.living_space == "apartment":
adaptability_bonus += 0.05
if 'adaptable' in temperament or 'versatile' in temperament:
adaptability_bonus += 0.05
bonus += min(0.1, adaptability_bonus)
# 4. 家庭相容性(最高0.1)
if user_prefs.has_children:
family_traits = {
'good with children': 0.06,
'patient': 0.05,
'gentle': 0.05,
'tolerant': 0.04,
'playful': 0.03
}
unfriendly_traits = {
'aggressive': -0.08,
'nervous': -0.07,
'protective': -0.06,
'territorial': -0.05
}
# 年齡評估這樣能更細緻
age_adjustments = {
'toddler': {'bonus_mult': 0.7, 'penalty_mult': 1.3},
'school_age': {'bonus_mult': 1.0, 'penalty_mult': 1.0},
'teenager': {'bonus_mult': 1.2, 'penalty_mult': 0.8}
}
adj = age_adjustments.get(user_prefs.children_age,
{'bonus_mult': 1.0, 'penalty_mult': 1.0})
family_bonus = sum(value for trait, value in family_traits.items()
if trait in temperament) * adj['bonus_mult']
family_penalty = sum(value for trait, value in unfriendly_traits.items()
if trait in temperament) * adj['penalty_mult']
bonus += min(0.15, max(-0.2, family_bonus + family_penalty))
# 5. 專門技能加分(最高0.1)
skill_bonus = 0.0
special_abilities = {
'working': 0.03,
'herding': 0.03,
'hunting': 0.03,
'tracking': 0.03,
'agility': 0.02
}
for ability, value in special_abilities.items():
if ability in temperament.lower():
skill_bonus += value
bonus += min(0.1, skill_bonus)
# 6. 適應性評估 - 根據具體環境給予更細緻的評分
adaptability_bonus = 0.0
if breed_info.get('Size') == "Small" and user_prefs.living_space == "apartment":
adaptability_bonus += 0.08 # 小型犬更適合公寓
# 環境適應性評估
if 'adaptable' in temperament or 'versatile' in temperament:
if user_prefs.living_space == "apartment":
adaptability_bonus += 0.10 # 適應性在公寓環境更重要
else:
adaptability_bonus += 0.05 # 其他環境仍有加分
# 氣候適應性
description = breed_info.get('Description', '').lower()
climate = user_prefs.climate
if climate == 'hot':
if 'heat tolerant' in description or 'warm climate' in description:
adaptability_bonus += 0.08
elif 'thick coat' in description or 'cold climate' in description:
adaptability_bonus -= 0.10
elif climate == 'cold':
if 'thick coat' in description or 'cold climate' in description:
adaptability_bonus += 0.08
elif 'heat tolerant' in description or 'short coat' in description:
adaptability_bonus -= 0.10
bonus += min(0.15, adaptability_bonus)
return min(0.5, max(-0.25, bonus))
@staticmethod
def calculate_additional_factors(breed_info: dict, user_prefs: 'UserPreferences') -> dict:
"""
計算額外的評估因素,結合品種特性與使用者需求的全面評估系統
此函數整合了:
1. 多功能性評估 - 品種的多樣化能力
2. 訓練性評估 - 學習和服從能力
3. 能量水平評估 - 活力和運動需求
4. 美容需求評估 - 護理和維護需求
5. 社交需求評估 - 與人互動的需求程度
6. 氣候適應性 - 對環境的適應能力
7. 運動類型匹配 - 與使用者運動習慣的契合度
8. 生活方式適配 - 與使用者日常生活的匹配度
"""
factors = {
'versatility': 0.0, # 多功能性
'trainability': 0.0, # 可訓練度
'energy_level': 0.0, # 能量水平
'grooming_needs': 0.0, # 美容需求
'social_needs': 0.0, # 社交需求
'weather_adaptability': 0.0,# 氣候適應性
'exercise_match': 0.0, # 運動匹配度
'lifestyle_fit': 0.0 # 生活方式適配度
}
temperament = breed_info.get('Temperament', '').lower()
description = breed_info.get('Description', '').lower()
size = breed_info.get('Size', 'Medium')
# 1. 多功能性評估 - 加強品種用途評估
versatile_traits = {
'intelligent': 0.25,
'adaptable': 0.25,
'trainable': 0.20,
'athletic': 0.15,
'versatile': 0.15
}
working_roles = {
'working': 0.20,
'herding': 0.15,
'hunting': 0.15,
'sporting': 0.15,
'companion': 0.10
}
# 計算特質分數
trait_score = sum(value for trait, value in versatile_traits.items()
if trait in temperament)
# 計算角色分數
role_score = sum(value for role, value in working_roles.items()
if role in description)
# 根據使用者需求調整多功能性評分
purpose_traits = {
'light_walks': ['calm', 'gentle', 'easy-going'],
'moderate_activity': ['adaptable', 'balanced', 'versatile'],
'active_training': ['intelligent', 'trainable', 'working']
}
if user_prefs.exercise_type in purpose_traits:
matching_traits = sum(1 for trait in purpose_traits[user_prefs.exercise_type]
if trait in temperament)
trait_score += matching_traits * 0.15
factors['versatility'] = min(1.0, trait_score + role_score)
# 2. 訓練性評估 - 考慮使用者經驗
trainable_traits = {
'intelligent': 0.3,
'eager to please': 0.3,
'trainable': 0.2,
'quick learner': 0.2,
'obedient': 0.2
}
base_trainability = sum(value for trait, value in trainable_traits.items()
if trait in temperament)
# 根據使用者經驗調整訓練性評分
experience_multipliers = {
'beginner': 1.2, # 新手更需要容易訓練的狗
'intermediate': 1.0,
'advanced': 0.8 # 專家能處理較難訓練的狗
}
factors['trainability'] = min(1.0, base_trainability *
experience_multipliers.get(user_prefs.experience_level, 1.0))
# 3. 能量水平評估 - 強化運動需求匹配
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
energy_levels = {
'VERY HIGH': {
'score': 1.0,
'min_exercise': 120,
'ideal_exercise': 150
},
'HIGH': {
'score': 0.8,
'min_exercise': 90,
'ideal_exercise': 120
},
'MODERATE': {
'score': 0.6,
'min_exercise': 60,
'ideal_exercise': 90
},
'LOW': {
'score': 0.4,
'min_exercise': 30,
'ideal_exercise': 60
}
}
breed_energy = energy_levels.get(exercise_needs, energy_levels['MODERATE'])
# 計算運動時間匹配度
if user_prefs.exercise_time >= breed_energy['ideal_exercise']:
energy_score = breed_energy['score']
else:
# 如果運動時間不足,按比例降低分數
deficit_ratio = max(0.4, user_prefs.exercise_time / breed_energy['ideal_exercise'])
energy_score = breed_energy['score'] * deficit_ratio
factors['energy_level'] = energy_score
# 4. 美容需求評估 - 加入更多毛髮類型考量
grooming_needs = breed_info.get('Grooming Needs', 'MODERATE').upper()
grooming_levels = {
'HIGH': 1.0,
'MODERATE': 0.6,
'LOW': 0.3
}
# 特殊毛髮類型評估
coat_adjustments = 0
if 'long coat' in description:
coat_adjustments += 0.2
if 'double coat' in description:
coat_adjustments += 0.15
if 'curly' in description:
coat_adjustments += 0.15
# 根據使用者承諾度調整
commitment_multipliers = {
'low': 1.5, # 低承諾度時加重美容需求的影響
'medium': 1.0,
'high': 0.8 # 高承諾度時降低美容需求的影響
}
base_grooming = grooming_levels.get(grooming_needs, 0.6) + coat_adjustments
factors['grooming_needs'] = min(1.0, base_grooming *
commitment_multipliers.get(user_prefs.grooming_commitment, 1.0))
# 5. 社交需求評估 - 加強家庭情況考量
social_traits = {
'friendly': 0.25,
'social': 0.25,
'affectionate': 0.20,
'people-oriented': 0.20
}
antisocial_traits = {
'independent': -0.20,
'aloof': -0.20,
'reserved': -0.15
}
social_score = sum(value for trait, value in social_traits.items()
if trait in temperament)
antisocial_score = sum(value for trait, value in antisocial_traits.items()
if trait in temperament)
# 家庭情況調整
if user_prefs.has_children:
child_friendly_bonus = 0.2 if 'good with children' in temperament else 0
social_score += child_friendly_bonus
factors['social_needs'] = min(1.0, max(0.0, social_score + antisocial_score))
# 6. 氣候適應性評估 - 更細緻的環境適應評估
climate_traits = {
'cold': {
'positive': ['thick coat', 'winter', 'cold climate'],
'negative': ['short coat', 'heat sensitive']
},
'hot': {
'positive': ['short coat', 'heat tolerant', 'warm climate'],
'negative': ['thick coat', 'cold climate']
},
'moderate': {
'positive': ['adaptable', 'all climate'],
'negative': []
}
}
climate_score = 0.4 # 基礎分數
if user_prefs.climate in climate_traits:
# 正面特質加分
climate_score += sum(0.2 for term in climate_traits[user_prefs.climate]['positive']
if term in description)
# 負面特質減分
climate_score -= sum(0.2 for term in climate_traits[user_prefs.climate]['negative']
if term in description)
factors['weather_adaptability'] = min(1.0, max(0.0, climate_score))
# 7. 運動類型匹配評估
exercise_type_traits = {
'light_walks': ['calm', 'gentle'],
'moderate_activity': ['adaptable', 'balanced'],
'active_training': ['athletic', 'energetic']
}
if user_prefs.exercise_type in exercise_type_traits:
match_score = sum(0.25 for trait in exercise_type_traits[user_prefs.exercise_type]
if trait in temperament)
factors['exercise_match'] = min(1.0, match_score + 0.5) # 基礎分0.5
# 8. 生活方式適配評估
lifestyle_score = 0.5 # 基礎分數
# 空間適配
if user_prefs.living_space == 'apartment':
if size == 'Small':
lifestyle_score += 0.2
elif size == 'Large':
lifestyle_score -= 0.2
elif user_prefs.living_space == 'house_large':
if size in ['Large', 'Giant']:
lifestyle_score += 0.2
# 時間可用性適配
time_availability_bonus = {
'limited': -0.1,
'moderate': 0,
'flexible': 0.1
}
lifestyle_score += time_availability_bonus.get(user_prefs.time_availability, 0)
factors['lifestyle_fit'] = min(1.0, max(0.0, lifestyle_score))
return factors
def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences) -> dict:
"""計算品種與使用者條件的相容性分數"""
try:
print(f"Processing breed: {breed_info.get('Breed', 'Unknown')}")
print(f"Breed info keys: {breed_info.keys()}")
if 'Size' not in breed_info:
print("Missing Size information")
raise KeyError("Size information missing")
def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float:
"""
1. 動態的基礎分數矩陣
2. 強化空間品質評估
3. 增加極端情況處理
4. 考慮不同空間組合的協同效應
"""
def get_base_score():
# 基礎分數矩陣 - 更極端的分數分配
base_matrix = {
"Small": {
"apartment": {
"no_yard": 0.85, # 小型犬在公寓仍然適合
"shared_yard": 0.90, # 共享院子提供額外活動空間
"private_yard": 0.95 # 私人院子最理想
},
"house_small": {
"no_yard": 0.80,
"shared_yard": 0.85,
"private_yard": 0.90
},
"house_large": {
"no_yard": 0.75,
"shared_yard": 0.80,
"private_yard": 0.85
}
},
"Medium": {
"apartment": {
"no_yard": 0.35, # 中型犬在公寓較受限
"shared_yard": 0.45,
"private_yard": 0.55
},
"house_small": {
"no_yard": 0.75,
"shared_yard": 0.85,
"private_yard": 0.90
},
"house_large": {
"no_yard": 0.85,
"shared_yard": 0.90,
"private_yard": 0.95
}
},
"Large": {
"apartment": {
"no_yard": 0.15, # 大型犬在公寓極不適合
"shared_yard": 0.25,
"private_yard": 0.35
},
"house_small": {
"no_yard": 0.55,
"shared_yard": 0.65,
"private_yard": 0.75
},
"house_large": {
"no_yard": 0.85,
"shared_yard": 0.90,
"private_yard": 1.0
}
},
"Giant": {
"apartment": {
"no_yard": 0.10, # 巨型犬在公寓基本不適合
"shared_yard": 0.20,
"private_yard": 0.30
},
"house_small": {
"no_yard": 0.40,
"shared_yard": 0.50,
"private_yard": 0.60
},
"house_large": {
"no_yard": 0.80,
"shared_yard": 0.90,
"private_yard": 1.0
}
}
}
yard_type = "private_yard" if has_yard else "no_yard"
return base_matrix.get(size, base_matrix["Medium"])[living_space][yard_type]
def calculate_exercise_adjustment():
# 運動需求對空間評分的影響
exercise_impact = {
"Very High": {
"apartment": -0.30, # 高運動需求在公寓環境更受限
"house_small": -0.15,
"house_large": -0.05
},
"High": {
"apartment": -0.25,
"house_small": -0.10,
"house_large": 0
},
"Moderate": {
"apartment": -0.15,
"house_small": -0.05,
"house_large": 0
},
"Low": {
"apartment": 0.10, # 低運動需求反而適合小空間
"house_small": 0.05,
"house_large": 0
}
}
return exercise_impact.get(exercise_needs, exercise_impact["Moderate"])[living_space]
def calculate_yard_bonus():
# 院子效益評估更加細緻
if not has_yard:
return 0
yard_benefits = {
"Giant": {
"Very High": 0.25,
"High": 0.20,
"Moderate": 0.15,
"Low": 0.10
},
"Large": {
"Very High": 0.20,
"High": 0.15,
"Moderate": 0.10,
"Low": 0.05
},
"Medium": {
"Very High": 0.15,
"High": 0.10,
"Moderate": 0.08,
"Low": 0.05
},
"Small": {
"Very High": 0.10,
"High": 0.08,
"Moderate": 0.05,
"Low": 0.03
}
}
size_benefits = yard_benefits.get(size, yard_benefits["Medium"])
return size_benefits.get(exercise_needs, size_benefits["Moderate"])
def apply_extreme_case_adjustments(score):
# 處理極端情況
if size == "Giant" and living_space == "apartment":
return score * 0.5 # 巨型犬在公寓給予更嚴重的懲罰
if size == "Large" and living_space == "apartment" and exercise_needs == "Very High":
return score * 0.6 # 高運動需求的大型犬在公寓更不適合
if size == "Small" and living_space == "house_large" and exercise_needs == "Low":
return score * 0.9 # 低運動需求的小型犬在大房子可能過於寬敞
return score
# 計算最終分數
base_score = get_base_score()
exercise_adj = calculate_exercise_adjustment()
yard_bonus = calculate_yard_bonus()
# 整合所有評分因素
initial_score = base_score + exercise_adj + yard_bonus
# 應用極端情況調整
final_score = apply_extreme_case_adjustments(initial_score)
# 確保分數在有效範圍內,但允許更極端的結果
return max(0.05, min(1.0, final_score))
def calculate_exercise_score(breed_needs: str, exercise_time: int, exercise_type: str) -> float:
"""
精確評估品種運動需求與使用者運動條件的匹配度
改進重點:
1. 擴大分數範圍到 0.1-1.0
2. 加強運動類型影響
3. 考慮運動強度與時間的綜合效果
4. 更細緻的時間匹配評估
"""
exercise_levels = {
'VERY HIGH': {
'min': 120,
'ideal': 150,
'max': 180,
'intensity': 'high',
'sessions': 'multiple',
'preferred_types': ['active_training', 'intensive_exercise'],
'type_weights': {
'active_training': 1.0,
'moderate_activity': 0.6,
'light_walks': 0.3
}
},
'HIGH': {
'min': 90,
'ideal': 120,
'max': 150,
'intensity': 'moderate_high',
'sessions': 'multiple',
'preferred_types': ['active_training', 'moderate_activity'],
'type_weights': {
'active_training': 0.9,
'moderate_activity': 0.8,
'light_walks': 0.4
}
},
'MODERATE HIGH': {
'min': 70,
'ideal': 90,
'max': 120,
'intensity': 'moderate',
'sessions': 'flexible',
'preferred_types': ['moderate_activity', 'active_training'],
'type_weights': {
'active_training': 0.8,
'moderate_activity': 0.9,
'light_walks': 0.5
}
},
'MODERATE': {
'min': 45,
'ideal': 60,
'max': 90,
'intensity': 'moderate',
'sessions': 'flexible',
'preferred_types': ['moderate_activity', 'light_walks'],
'type_weights': {
'active_training': 0.7,
'moderate_activity': 1.0,
'light_walks': 0.8
}
},
'MODERATE LOW': {
'min': 30,
'ideal': 45,
'max': 70,
'intensity': 'light_moderate',
'sessions': 'flexible',
'preferred_types': ['light_walks', 'moderate_activity'],
'type_weights': {
'active_training': 0.6,
'moderate_activity': 0.9,
'light_walks': 1.0
}
},
'LOW': {
'min': 15,
'ideal': 30,
'max': 45,
'intensity': 'light',
'sessions': 'single',
'preferred_types': ['light_walks'],
'type_weights': {
'active_training': 0.5,
'moderate_activity': 0.8,
'light_walks': 1.0
}
}
}
breed_level = exercise_levels.get(breed_needs.upper(), exercise_levels['MODERATE'])
# 時間匹配度評估(基礎分數)
def calculate_time_score():
if exercise_time >= breed_level['ideal']:
if exercise_time > breed_level['max']:
# 超出最大值的懲罰更明顯
excess = (exercise_time - breed_level['max']) / 30
return max(0.4, 1.0 - (excess * 0.2))
return 1.0 # 理想範圍內給予滿分
elif exercise_time >= breed_level['min']:
# 在最小值和理想值之間使用更陡峭的曲線
progress = (exercise_time - breed_level['min']) / (breed_level['ideal'] - breed_level['min'])
return 0.5 + (progress * 0.5)
else:
# 低於最小值時給予更嚴厲的懲罰
deficit_ratio = exercise_time / breed_level['min']
return max(0.1, deficit_ratio * 0.5)
# 運動類型匹配度評估
def calculate_type_score():
type_weight = breed_level['type_weights'].get(exercise_type, 0.5)
# 根據運動需求等級調整類型權重
if breed_needs.upper() in ['VERY HIGH', 'HIGH']:
if exercise_type == 'light_walks':
type_weight *= 0.5 # 高需求品種做輕度運動的懲罰
elif breed_needs.upper() == 'LOW':
if exercise_type == 'active_training':
type_weight *= 0.7 # 低需求品種做高強度運動的輕微懲罰
return type_weight
# 計算最終分數
time_score = calculate_time_score()
type_score = calculate_type_score()
# 綜合評分,運動時間佔70%,類型佔30%
final_score = (time_score * 0.7) + (type_score * 0.3)
# 特殊情況調整
if exercise_time < breed_level['min'] * 0.5: # 運動時間嚴重不足
final_score *= 0.5
elif exercise_time > breed_level['max'] * 1.5: # 運動時間過多
final_score *= 0.7
return max(0.1, min(1.0, final_score))
def calculate_grooming_score(breed_needs: str, user_commitment: str, breed_size: str) -> float:
"""
計算美容需求分數,強化美容維護需求與使用者承諾度的匹配評估。
這個函數特別注意品種大小對美容工作的影響,以及不同程度的美容需求對時間投入的要求。
"""
# 重新設計基礎分數矩陣,讓美容需求的差異更加明顯
base_scores = {
"High": {
"low": 0.20, # 高需求對低承諾極不合適,顯著降低初始分數
"medium": 0.65, # 中等承諾仍有挑戰
"high": 1.0 # 高承諾最適合
},
"Moderate": {
"low": 0.45, # 中等需求對低承諾有困難
"medium": 0.85, # 較好的匹配
"high": 0.95 # 高承諾會有餘力
},
"Low": {
"low": 0.90, # 低需求對低承諾很合適
"medium": 0.85, # 略微降低以反映可能過度投入
"high": 0.80 # 可能造成資源浪費
}
}
# 取得基礎分數
base_score = base_scores.get(breed_needs, base_scores["Moderate"])[user_commitment]
# 根據品種大小調整美容工作量
size_adjustments = {
"Giant": {
"low": -0.35, # 大型犬的美容工作量顯著增加
"medium": -0.20,
"high": -0.10
},
"Large": {
"low": -0.25,
"medium": -0.15,
"high": -0.05
},
"Medium": {
"low": -0.15,
"medium": -0.10,
"high": 0
},
"Small": {
"low": -0.10,
"medium": -0.05,
"high": 0
}
}
# 應用體型調整
size_adjustment = size_adjustments.get(breed_size, size_adjustments["Medium"])[user_commitment]
current_score = base_score + size_adjustment
# 特殊毛髮類型的額外調整
def get_coat_adjustment(breed_description: str, commitment: str) -> float:
"""
評估特殊毛髮類型所需的額外維護工作
"""
adjustments = 0
# 長毛品種需要更多維護
if 'long coat' in breed_description.lower():
coat_penalties = {
'low': -0.20,
'medium': -0.15,
'high': -0.05
}
adjustments += coat_penalties[commitment]
# 雙層毛的品種掉毛量更大
if 'double coat' in breed_description.lower():
double_coat_penalties = {
'low': -0.15,
'medium': -0.10,
'high': -0.05
}
adjustments += double_coat_penalties[commitment]
# 捲毛品種需要定期專業修剪
if 'curly' in breed_description.lower():
curly_penalties = {
'low': -0.15,
'medium': -0.10,
'high': -0.05
}
adjustments += curly_penalties[commitment]
return adjustments
# 季節性考量
def get_seasonal_adjustment(breed_description: str, commitment: str) -> float:
"""
評估季節性掉毛對美容需求的影響
"""
if 'seasonal shedding' in breed_description.lower():
seasonal_penalties = {
'low': -0.15,
'medium': -0.10,
'high': -0.05
}
return seasonal_penalties[commitment]
return 0
# 專業美容需求評估
def get_professional_grooming_adjustment(breed_description: str, commitment: str) -> float:
"""
評估需要專業美容服務的影響
"""
if 'professional grooming' in breed_description.lower():
grooming_penalties = {
'low': -0.20,
'medium': -0.15,
'high': -0.05
}
return grooming_penalties[commitment]
return 0
# 應用所有額外調整
# 由於這些是示例調整,實際使用時需要根據品種描述信息進行調整
coat_adjustment = get_coat_adjustment("", user_commitment)
seasonal_adjustment = get_seasonal_adjustment("", user_commitment)
professional_adjustment = get_professional_grooming_adjustment("", user_commitment)
final_score = current_score + coat_adjustment + seasonal_adjustment + professional_adjustment
# 確保分數在有意義的範圍內,但允許更大的差異
return max(0.1, min(1.0, final_score))
def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
"""
計算使用者經驗與品種需求的匹配分數,加強經驗等級的影響力
重要改進:
1. 擴大基礎分數差異
2. 加重困難特徵的懲罰
3. 更細緻的品種特性評估
"""
# 基礎分數矩陣 - 大幅擴大不同經驗等級的分數差異
base_scores = {
"High": {
"beginner": 0.15, # 降低起始分,高難度品種對新手幾乎不推薦
"intermediate": 0.65, # 中級玩家仍需謹慎
"advanced": 1.0 # 資深者能完全勝任
},
"Moderate": {
"beginner": 0.40, # 適中難度對新手仍具挑戰
"intermediate": 0.85, # 中級玩家較適合
"advanced": 0.95 # 資深者完全勝任
},
"Low": {
"beginner": 0.85, # 新手友善品種
"intermediate": 0.90, # 中級玩家幾乎完全勝任
"advanced": 0.85 # 資深者完全勝任
}
}
# 取得基礎分數
score = base_scores.get(care_level, base_scores["Moderate"])[user_experience]
temperament_lower = temperament.lower()
temperament_adjustments = 0.0
# 根據經驗等級設定不同的特徵評估標準
if user_experience == "beginner":
# 新手不適合的特徵 - 更嚴格的懲罰
difficult_traits = {
'stubborn': -0.30, # 固執性格嚴重影響新手
'independent': -0.25, # 獨立性高的品種不適合新手
'dominant': -0.25, # 支配性強的品種需要經驗處理
'strong-willed': -0.20, # 強勢性格需要技巧管理
'protective': -0.20, # 保護性強需要適當訓練
'aloof': -0.15, # 冷漠性格需要耐心培養
'energetic': -0.15, # 活潑好動需要經驗引導
'aggressive': -0.35 # 攻擊傾向極不適合新手
}
# 新手友善的特徵 - 適度的獎勵
easy_traits = {
'gentle': 0.05, # 溫和性格適合新手
'friendly': 0.05, # 友善性格容易相處
'eager to please': 0.08, # 願意服從較容易訓練
'patient': 0.05, # 耐心的特質有助於建立關係
'adaptable': 0.05, # 適應性強較容易照顧
'calm': 0.06 # 冷靜的性格較好掌握
}
# 計算特徵調整
for trait, penalty in difficult_traits.items():
if trait in temperament_lower:
temperament_adjustments += penalty
for trait, bonus in easy_traits.items():
if trait in temperament_lower:
temperament_adjustments += bonus
# 品種類型特殊評估
if 'terrier' in temperament_lower:
temperament_adjustments -= 0.20 # 梗類犬種通常不適合新手
elif 'working' in temperament_lower:
temperament_adjustments -= 0.25 # 工作犬需要經驗豐富的主人
elif 'guard' in temperament_lower:
temperament_adjustments -= 0.25 # 護衛犬需要專業訓練
elif user_experience == "intermediate":
# 中級玩家的特徵評估
moderate_traits = {
'stubborn': -0.15, # 仍然需要注意,但懲罰較輕
'independent': -0.10,
'intelligent': 0.08, # 聰明的特質可以好好發揮
'athletic': 0.06, # 運動能力可以適當訓練
'versatile': 0.07, # 多功能性可以開發
'protective': -0.08 # 保護性仍需注意
}
for trait, adjustment in moderate_traits.items():
if trait in temperament_lower:
temperament_adjustments += adjustment
else: # advanced
# 資深玩家能夠應對挑戰性特徵
advanced_traits = {
'stubborn': 0.05, # 困難特徵反而成為優勢
'independent': 0.05,
'intelligent': 0.10,
'protective': 0.05,
'strong-willed': 0.05
}
for trait, bonus in advanced_traits.items():
if trait in temperament_lower:
temperament_adjustments += bonus
# 確保最終分數範圍更大,讓差異更明顯
final_score = max(0.05, min(1.0, score + temperament_adjustments))
return final_score
def calculate_health_score(breed_name: str, user_prefs: UserPreferences) -> float:
"""
計算品種健康分數,加強健康問題的影響力和與使用者敏感度的連結
重要改進:
1. 根據使用者的健康敏感度調整分數
2. 更嚴格的健康問題評估
3. 考慮多重健康問題的累積效應
4. 加入遺傳疾病的特別考量
"""
if breed_name not in breed_health_info:
return 0.5
health_notes = breed_health_info[breed_name]['health_notes'].lower()
# 嚴重健康問題 - 加重扣分
severe_conditions = {
'hip dysplasia': -0.25, # 髖關節發育不良,影響生活品質
'heart disease': -0.25, # 心臟疾病,需要長期治療
'progressive retinal atrophy': -0.20, # 進行性視網膜萎縮,導致失明
'bloat': -0.22, # 胃扭轉,致命風險
'epilepsy': -0.20, # 癲癇,需要長期藥物控制
'degenerative myelopathy': -0.20, # 脊髓退化,影響行動能力
'von willebrand disease': -0.18 # 血液凝固障礙
}
# 中度健康問題 - 適度扣分
moderate_conditions = {
'allergies': -0.12, # 過敏問題,需要持續關注
'eye problems': -0.15, # 眼睛問題,可能需要手術
'joint problems': -0.15, # 關節問題,影響運動能力
'hypothyroidism': -0.12, # 甲狀腺功能低下,需要藥物治療
'ear infections': -0.10, # 耳道感染,需要定期清理
'skin issues': -0.12 # 皮膚問題,需要特殊護理
}
# 輕微健康問題 - 輕微扣分
minor_conditions = {
'dental issues': -0.08, # 牙齒問題,需要定期護理
'weight gain tendency': -0.08, # 易胖體質,需要控制飲食
'minor allergies': -0.06, # 輕微過敏,可控制
'seasonal allergies': -0.06 # 季節性過敏
}
# 計算基礎健康分數
health_score = 1.0
# 健康問題累積效應計算
condition_counts = {
'severe': 0,
'moderate': 0,
'minor': 0
}
# 計算各等級健康問題的數量和影響
for condition, penalty in severe_conditions.items():
if condition in health_notes:
health_score += penalty
condition_counts['severe'] += 1
for condition, penalty in moderate_conditions.items():
if condition in health_notes:
health_score += penalty
condition_counts['moderate'] += 1
for condition, penalty in minor_conditions.items():
if condition in health_notes:
health_score += penalty
condition_counts['minor'] += 1
# 多重問題的額外懲罰(累積效應)
if condition_counts['severe'] > 1:
health_score *= (0.85 ** (condition_counts['severe'] - 1))
if condition_counts['moderate'] > 2:
health_score *= (0.90 ** (condition_counts['moderate'] - 2))
# 根據使用者健康敏感度調整分數
sensitivity_multipliers = {
'low': 1.1, # 較不在意健康問題
'medium': 1.0, # 標準評估
'high': 0.85 # 非常注重健康問題
}
health_score *= sensitivity_multipliers.get(user_prefs.health_sensitivity, 1.0)
# 壽命影響評估
try:
lifespan = breed_health_info[breed_name].get('average_lifespan', '10-12')
years = float(lifespan.split('-')[0])
if years < 8:
health_score *= 0.85 # 短壽命顯著降低分數
elif years < 10:
health_score *= 0.92 # 較短壽命輕微降低分數
elif years > 13:
health_score *= 1.1 # 長壽命適度加分
except:
pass
# 特殊健康優勢
if 'generally healthy' in health_notes or 'hardy breed' in health_notes:
health_score *= 1.15
elif 'robust health' in health_notes or 'few health issues' in health_notes:
health_score *= 1.1
# 確保分數在合理範圍內,但允許更大的分數差異
return max(0.1, min(1.0, health_score))
def calculate_noise_score(breed_name: str, user_prefs: UserPreferences) -> float:
"""
計算品種噪音分數,特別加強噪音程度與生活環境的關聯性評估
"""
if breed_name not in breed_noise_info:
return 0.5
noise_info = breed_noise_info[breed_name]
noise_level = noise_info['noise_level'].lower()
noise_notes = noise_info['noise_notes'].lower()
# 重新設計基礎噪音分數矩陣,考慮不同情境下的接受度
base_scores = {
'low': {
'low': 1.0, # 安靜的狗對低容忍完美匹配
'medium': 0.95, # 安靜的狗對一般容忍很好
'high': 0.90 # 安靜的狗對高容忍當然可以
},
'medium': {
'low': 0.60, # 一般吠叫對低容忍較困難
'medium': 0.90, # 一般吠叫對一般容忍可接受
'high': 0.95 # 一般吠叫對高容忍很好
},
'high': {
'low': 0.25, # 愛叫的狗對低容忍極不適合
'medium': 0.65, # 愛叫的狗對一般容忍有挑戰
'high': 0.90 # 愛叫的狗對高容忍可以接受
},
'varies': {
'low': 0.50, # 不確定的情況對低容忍風險較大
'medium': 0.75, # 不確定的情況對一般容忍可嘗試
'high': 0.85 # 不確定的情況對高容忍問題較小
}
}
# 取得基礎分數
base_score = base_scores.get(noise_level, {'low': 0.6, 'medium': 0.75, 'high': 0.85})[user_prefs.noise_tolerance]
# 吠叫原因評估,根據環境調整懲罰程度
barking_penalties = {
'separation anxiety': {
'apartment': -0.30, # 在公寓對鄰居影響更大
'house_small': -0.25,
'house_large': -0.20
},
'excessive barking': {
'apartment': -0.25,
'house_small': -0.20,
'house_large': -0.15
},
'territorial': {
'apartment': -0.20, # 在公寓更容易被觸發
'house_small': -0.15,
'house_large': -0.10
},
'alert barking': {
'apartment': -0.15, # 公寓環境刺激較多
'house_small': -0.10,
'house_large': -0.08
},
'attention seeking': {
'apartment': -0.15,
'house_small': -0.12,
'house_large': -0.10
}
}
# 計算環境相關的吠叫懲罰
living_space = user_prefs.living_space
barking_penalty = 0
for trigger, penalties in barking_penalties.items():
if trigger in noise_notes:
barking_penalty += penalties.get(living_space, -0.15)
# 特殊情況評估
special_adjustments = 0
if user_prefs.has_children:
# 孩童年齡相關調整
child_age_adjustments = {
'toddler': {
'high': -0.20, # 幼童對吵鬧更敏感
'medium': -0.15,
'low': -0.05
},
'school_age': {
'high': -0.15,
'medium': -0.10,
'low': -0.05
},
'teenager': {
'high': -0.10,
'medium': -0.05,
'low': -0.02
}
}
# 根據孩童年齡和噪音等級調整
age_adj = child_age_adjustments.get(user_prefs.children_age,
child_age_adjustments['school_age'])
special_adjustments += age_adj.get(noise_level, -0.10)
# 訓練性補償評估
trainability_bonus = 0
if 'responds well to training' in noise_notes:
trainability_bonus = 0.12
elif 'can be trained' in noise_notes:
trainability_bonus = 0.08
elif 'difficult to train' in noise_notes:
trainability_bonus = 0.02
# 夜間吠叫特別考量
if 'night barking' in noise_notes or 'howls' in noise_notes:
if user_prefs.living_space == 'apartment':
special_adjustments -= 0.15
elif user_prefs.living_space == 'house_small':
special_adjustments -= 0.10
else:
special_adjustments -= 0.05
# 計算最終分數,確保更大的分數範圍
final_score = base_score + barking_penalty + special_adjustments + trainability_bonus
return max(0.1, min(1.0, final_score))
# 1. 計算基礎分數
print("\n=== 開始計算品種相容性分數 ===")
print(f"處理品種: {breed_info.get('Breed', 'Unknown')}")
print(f"品種信息: {breed_info}")
print(f"使用者偏好: {vars(user_prefs)}")
# 計算所有基礎分數並整合到字典中
scores = {
'space': calculate_space_score(
breed_info['Size'],
user_prefs.living_space,
user_prefs.yard_access != 'no_yard',
breed_info.get('Exercise Needs', 'Moderate')
),
'exercise': calculate_exercise_score(
breed_info.get('Exercise Needs', 'Moderate'),
user_prefs.exercise_time,
user_prefs.exercise_type
),
'grooming': calculate_grooming_score(
breed_info.get('Grooming Needs', 'Moderate'),
user_prefs.grooming_commitment.lower(),
breed_info['Size']
),
'experience': calculate_experience_score(
breed_info.get('Care Level', 'Moderate'),
user_prefs.experience_level,
breed_info.get('Temperament', '')
),
'health': calculate_health_score(
breed_info.get('Breed', ''),
user_prefs
),
'noise': calculate_noise_score(
breed_info.get('Breed', ''),
user_prefs
)
}
final_score = calculate_breed_compatibility_score(
scores=scores,
user_prefs=user_prefs,
breed_info=breed_info
)
# 計算環境適應性加成
adaptability_bonus = calculate_environmental_fit(breed_info, user_prefs)
# 整合最終分數和加成
final_score = (final_score * 0.9) + (adaptability_bonus * 0.1)
final_score = amplify_score_extreme(final_score)
# 更新並返回完整的評分結果
scores.update({
'overall': final_score,
'adaptability_bonus': adaptability_bonus
})
return scores
except Exception as e:
print(f"\n!!!!! 發生嚴重錯誤 !!!!!")
print(f"錯誤類型: {type(e).__name__}")
print(f"錯誤訊息: {str(e)}")
print(f"完整錯誤追蹤:")
print(traceback.format_exc())
return {k: 0.6 for k in ['space', 'exercise', 'grooming', 'experience', 'health', 'noise', 'overall']}
def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -> float:
"""計算品種與環境的適應性加成"""
adaptability_score = 0.0
description = breed_info.get('Description', '').lower()
temperament = breed_info.get('Temperament', '').lower()
# 環境適應性評估
if user_prefs.living_space == 'apartment':
if 'adaptable' in temperament or 'apartment' in description:
adaptability_score += 0.1
if breed_info.get('Size') == 'Small':
adaptability_score += 0.05
elif user_prefs.living_space == 'house_large':
if 'active' in temperament or 'energetic' in description:
adaptability_score += 0.1
# 氣候適應性
if user_prefs.climate in description or user_prefs.climate in temperament:
adaptability_score += 0.05
return min(0.2, adaptability_score)
# def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
# """
# 1. 條件間的相互影響
# 2. 動態權重調整
# 3. 更自然的評分機制
# """
# def evaluate_perfect_conditions():
# """
# 評估條件匹配度,考慮條件間的相互關係。
# 返回的不只是單純的匹配分數,而是綜合了各種條件互相影響後的結果。
# """
# perfect_matches = {
# 'size_match': 0,
# 'exercise_match': 0,
# 'experience_match': 0,
# 'living_condition_match': 0
# }
# # 居住空間與體型匹配評估
# size_living_evaluation = {
# 'apartment': {
# 'Small': 1.0,
# 'Medium': 0.4,
# 'Large': 0.2,
# 'Giant': 0.1
# },
# 'house_small': {
# 'Small': 0.9,
# 'Medium': 1.0,
# 'Large': 0.6,
# 'Giant': 0.4
# }
# }
# # 對於大房子,我們不使用固定的匹配矩陣,而是根據其他條件動態評估
# if user_prefs.living_space == 'house_large':
# # 大房子的評估更關注其他因素而不是體型限制
# perfect_matches['size_match'] = 0.8 # 基礎分數較高
# if breed_info['Size'] in ['Medium', 'Large']:
# perfect_matches['size_match'] = 0.9
# else:
# perfect_matches['size_match'] = size_living_evaluation.get(
# user_prefs.living_space, {}
# ).get(breed_info['Size'], 0.5)
# # 運動需求匹配評估,考慮多個相關因素
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
# exercise_time = user_prefs.exercise_time
# # 建立運動時間的基礎評估
# def evaluate_exercise_match():
# # 根據運動需求級別動態計算理想範圍
# exercise_ranges = {
# 'VERY HIGH': (120, 180),
# 'HIGH': (90, 150),
# 'MODERATE': (60, 120),
# 'LOW': (30, 90)
# }
# # 獲取該品種的理想運動範圍
# ideal_range = exercise_ranges.get(exercise_needs, (60, 120))
# min_time, max_time = ideal_range
# # 動態計算匹配度,避免硬性分界
# if min_time <= exercise_time <= max_time:
# base_score = 1.0
# else:
# # 計算與理想範圍的偏差程度
# if exercise_time < min_time:
# deviation = (min_time - exercise_time) / min_time
# else:
# deviation = (exercise_time - max_time) / max_time
# base_score = max(0.3, 1 - deviation)
# return base_score
# # 結合運動時間與其他條件
# exercise_base_score = evaluate_exercise_match()
# # 考慮時間可用性的影響
# time_availability_impact = {
# 'limited': 0.7,
# 'moderate': 0.9,
# 'flexible': 1.0
# }
# # 考慮使用者經驗對運動安排的影響
# experience_impact = {
# 'beginner': 0.8,
# 'intermediate': 0.9,
# 'advanced': 1.0
# }
# # 計算最終運動匹配度
# exercise_modifiers = (
# time_availability_impact.get(user_prefs.time_availability, 0.9) *
# experience_impact.get(user_prefs.experience_level, 0.9)
# )
# perfect_matches['exercise_match'] = exercise_base_score * exercise_modifiers
# # 經驗匹配評估,考慮品種難度和其他因素
# care_level = breed_info.get('Care Level', 'MODERATE').upper()
# # 基礎經驗匹配評估
# experience_base = {
# 'HIGH': {'beginner': 0.3, 'intermediate': 0.7, 'advanced': 1.0},
# 'MODERATE': {'beginner': 0.6, 'intermediate': 0.9, 'advanced': 1.0},
# 'LOW': {'beginner': 0.9, 'intermediate': 1.0, 'advanced': 0.9}
# }
# experience_score = experience_base.get(care_level, experience_base['MODERATE']
# ).get(user_prefs.experience_level, 0.7)
# # 調整經驗分數基於其他因素
# if user_prefs.has_children:
# experience_score *= 0.8 if user_prefs.experience_level == 'beginner' else 0.9
# perfect_matches['experience_match'] = experience_score
# # 生活條件整體評估
# living_score = 1.0
# # 院子影響評估
# if breed_info.get('Exercise Needs', 'MODERATE').upper() in ['HIGH', 'VERY HIGH']:
# yard_impacts = {
# 'no_yard': 0.6,
# 'shared_yard': 0.8,
# 'private_yard': 1.0
# }
# living_score *= yard_impacts.get(user_prefs.yard_access, 0.8)
# perfect_matches['living_condition_match'] = living_score
# return perfect_matches
# def calculate_weights():
# """
# 計算動態權重,根據條件的極端程度自動調整各項評分的重要性
# """
# # 基礎權重設定
# base_weights = {
# 'space': 0.20,
# 'exercise': 0.20,
# 'experience': 0.20,
# 'grooming': 0.15,
# 'noise': 0.15,
# 'health': 0.10
# }
# # 計算條件的極端程度
# def calculate_extremity():
# extremities = {}
# # 運動時間極端度
# if user_prefs.exercise_time < 30:
# extremities['exercise'] = ('low', 0.8)
# elif user_prefs.exercise_time > 150:
# extremities['exercise'] = ('high', 0.8)
# else:
# extremities['exercise'] = ('normal', 0.3)
# # 居住空間極端度
# if user_prefs.living_space == 'apartment':
# extremities['space'] = ('restrictive', 0.9)
# elif user_prefs.living_space == 'house_large':
# extremities['space'] = ('relaxed', 0.2)
# else:
# extremities['space'] = ('normal', 0.5)
# return extremities
# extremities = calculate_extremity()
# # 根據極端程度調整權重
# weight_adjustments = {}
# # 空間限制的權重調整
# if extremities['space'][0] == 'restrictive':
# weight_adjustments['space'] = 3.0
# weight_adjustments['noise'] = 2.0
# elif extremities['space'][0] == 'relaxed':
# weight_adjustments['space'] = 0.5
# weight_adjustments['exercise'] = 1.5
# # 運動需求的權重調整
# if extremities['exercise'][0] in ['low', 'high']:
# weight_adjustments['exercise'] = 2.5
# # 經驗需求的權重調整
# if user_prefs.experience_level == 'beginner':
# weight_adjustments['experience'] = 2.0
# # 應用權重調整
# final_weights = base_weights.copy()
# for key, adjustment in weight_adjustments.items():
# final_weights[key] *= adjustment
# return final_weights
# def apply_special_case_adjustments(score):
# """
# 處理特殊情況,考慮條件組合產生的效果
# """
# # 評估條件組合的嚴重程度
# severity = 1.0
# # 空間與運動組合評估
# if user_prefs.living_space == 'apartment':
# if breed_info.get('Exercise Needs', 'MODERATE').upper() == 'VERY HIGH':
# severity *= 0.6
# elif breed_info['Size'] in ['Large', 'Giant']:
# severity *= 0.7
# # 經驗與品種難度組合評估
# if user_prefs.experience_level == 'beginner':
# if breed_info.get('Care Level') == 'HIGH':
# if user_prefs.has_children:
# severity *= 0.6
# else:
# severity *= 0.7
# # 時間限制與需求組合評估
# if user_prefs.time_availability == 'limited':
# if breed_info.get('Exercise Needs').upper() in ['HIGH', 'VERY HIGH']:
# severity *= 0.8
# return score * severity
# # 評估完美匹配條件
# perfect_conditions = evaluate_perfect_conditions()
# # 計算動態權重
# weights = calculate_weights()
# # 正規化權重
# total_weight = sum(weights.values())
# normalized_weights = {k: v/total_weight for k, v in weights.items()}
# # 計算基礎分數
# base_score = sum(scores[k] * normalized_weights[k] for k in scores.keys())
# # 完美匹配獎勵
# perfect_bonus = 1.0
# perfect_bonus += 0.15 * perfect_conditions['size_match']
# perfect_bonus += 0.15 * perfect_conditions['exercise_match']
# perfect_bonus += 0.15 * perfect_conditions['experience_match']
# perfect_bonus += 0.05 * perfect_conditions['living_condition_match']
# # 品種特性加成(使用原有的 calculate_breed_bonus 函數)
# breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
# # 計算最終分數並應用特殊情況調整
# final_score = (base_score * 0.8 + breed_bonus * 0.2) * perfect_bonus
# final_score = apply_special_case_adjustments(final_score)
# return min(1.0, final_score)
def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
"""
1. 運動類型與時間的精確匹配
2. 進階使用者的專業需求
3. 空間利用的實際效果
4. 條件組合的嚴格評估
"""
def evaluate_perfect_conditions():
"""評估條件匹配度,特別強化運動類型與專業程度的評估"""
perfect_matches = {
'size_match': 0,
'exercise_match': 0,
'experience_match': 0,
'living_condition_match': 0
}
# 運動類型與需求的精確匹配
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
exercise_time = user_prefs.exercise_time
exercise_type = user_prefs.exercise_type
# 定義品種的理想運動模式
breed_exercise_preferences = {
'VERY HIGH': {
'ideal_type': 'active_training',
'acceptable_types': ['moderate_activity'],
'time_ranges': {
'ideal': (120, 180),
'acceptable': (90, 200)
}
},
'HIGH': {
'ideal_type': 'moderate_activity',
'acceptable_types': ['active_training', 'light_walks'],
'time_ranges': {
'ideal': (90, 150),
'acceptable': (60, 180)
}
},
'MODERATE': {
'ideal_type': 'moderate_activity',
'acceptable_types': ['light_walks', 'active_training'],
'time_ranges': {
'ideal': (45, 90),
'acceptable': (30, 120)
}
},
'LOW': {
'ideal_type': 'light_walks',
'acceptable_types': ['moderate_activity'],
'time_ranges': {
'ideal': (30, 60),
'acceptable': (15, 90)
}
}
}
# 計算運動匹配度
exercise_profile = breed_exercise_preferences.get(exercise_needs,
breed_exercise_preferences['MODERATE'])
# 時間匹配度計算
time_ranges = exercise_profile['time_ranges']
if time_ranges['ideal'][0] <= exercise_time <= time_ranges['ideal'][1]:
time_score = 1.0
elif time_ranges['acceptable'][0] <= exercise_time <= time_ranges['acceptable'][1]:
# 計算與理想範圍的距離
if exercise_time < time_ranges['ideal'][0]:
deviation = (time_ranges['ideal'][0] - exercise_time) / time_ranges['ideal'][0]
else:
deviation = (exercise_time - time_ranges['ideal'][1]) / time_ranges['ideal'][1]
time_score = max(0.4, 1 - (deviation * 0.6))
else:
time_score = 0.3
# 運動類型匹配度計算
if exercise_type == exercise_profile['ideal_type']:
type_score = 1.0
elif exercise_type in exercise_profile['acceptable_types']:
type_score = 0.7
else:
type_score = 0.4
# 若運動時間過長但強度不足,額外降低分數
if exercise_time > time_ranges['acceptable'][1] and exercise_type != exercise_profile['ideal_type']:
type_score *= 0.7
perfect_matches['exercise_match'] = (time_score * 0.6) + (type_score * 0.4)
# 體型與空間的實際利用評估
space_utilization = {
'apartment': {
'Small': 1.0,
'Medium': 0.4,
'Large': 0.2,
'Giant': 0.1
},
'house_small': {
'Small': 0.9,
'Medium': 1.0,
'Large': 0.5,
'Giant': 0.3
},
'house_large': {
'Small': 0.7,
'Medium': 0.9,
'Large': 1.0,
'Giant': 0.95
}
}
# 增加活動空間需求評估
space_needs = 'high' if exercise_needs in ['VERY HIGH', 'HIGH'] else 'moderate'
if space_needs == 'high' and user_prefs.living_space != 'house_large':
space_score = space_utilization[user_prefs.living_space][breed_info['Size']] * 0.8
else:
space_score = space_utilization.get(user_prefs.living_space,
space_utilization['house_small'])[breed_info['Size']]
perfect_matches['size_match'] = space_score
# 經驗需求的專業評估
care_level = breed_info.get('Care Level', 'MODERATE').upper()
temperament = breed_info.get('Temperament', '').lower()
# 定義進階特徵
advanced_traits = ['working', 'independent', 'dominant', 'protective']
advanced_trait_count = sum(1 for trait in advanced_traits if trait in temperament)
# 經驗匹配度計算
experience_matrix = {
'HIGH': {
'beginner': 0.2, # 更嚴格的新手限制
'intermediate': 0.6,
'advanced': 1.0
},
'MODERATE': {
'beginner': 0.5,
'intermediate': 0.9,
'advanced': 0.95
},
'LOW': {
'beginner': 0.9,
'intermediate': 0.85,
'advanced': 0.8 # 對專家稍微降低簡單品種的分數
}
}
experience_score = experience_matrix[care_level][user_prefs.experience_level]
# 根據進階特徵調整分數
if advanced_trait_count > 0:
if user_prefs.experience_level == 'beginner':
experience_score *= (0.8 ** advanced_trait_count)
elif user_prefs.experience_level == 'advanced':
experience_score *= (1.1 ** min(advanced_trait_count, 2))
perfect_matches['experience_match'] = experience_score
# 生活條件整體評估
living_score = 1.0
# 院子影響的嚴格評估
if breed_info.get('Exercise Needs', 'MODERATE').upper() in ['HIGH', 'VERY HIGH']:
yard_impacts = {
'no_yard': 0.5, # 更嚴格的懲罰
'shared_yard': 0.7,
'private_yard': 1.0
}
living_score *= yard_impacts.get(user_prefs.yard_access, 0.7)
# 時間可用性評估
time_impacts = {
'limited': 0.6, # 更嚴格的時間限制影響
'moderate': 0.8,
'flexible': 1.0
}
living_score *= time_impacts.get(user_prefs.time_availability, 0.8)
perfect_matches['living_condition_match'] = living_score
return perfect_matches
def calculate_weights():
"""計算動態權重,強化條件極端情況的影響"""
base_weights = {
'space': 0.20,
'exercise': 0.20,
'experience': 0.20,
'grooming': 0.15,
'noise': 0.15,
'health': 0.10
}
# 計算條件極端度
def calculate_condition_extremity():
extremities = {}
# 運動時間極端度評估
if user_prefs.exercise_time < 30:
extremities['exercise'] = ('very_low', 0.9)
elif user_prefs.exercise_time < 60:
extremities['exercise'] = ('low', 0.7)
elif user_prefs.exercise_time > 150:
extremities['exercise'] = ('very_high', 0.9)
elif user_prefs.exercise_time > 120:
extremities['exercise'] = ('high', 0.7)
else:
extremities['exercise'] = ('moderate', 0.3)
# 空間限制極端度評估
if user_prefs.living_space == 'apartment':
extremities['space'] = ('very_restricted', 0.9)
elif user_prefs.living_space == 'house_small':
extremities['space'] = ('restricted', 0.6)
else:
extremities['space'] = ('spacious', 0.3)
return extremities
extremities = calculate_condition_extremity()
# 權重調整
weight_adjustments = {}
# 空間權重調整
if extremities['space'][0] == 'very_restricted':
weight_adjustments['space'] = 3.0
weight_adjustments['noise'] = 2.5
elif extremities['space'][0] == 'restricted':
weight_adjustments['space'] = 2.0
weight_adjustments['noise'] = 1.8
elif extremities['space'][0] == 'spacious':
weight_adjustments['space'] = 0.7 # 大空間時降低空間權重
weight_adjustments['exercise'] = 1.5 # 提升運動重要性
# 運動需求權重調整
if extremities['exercise'][0] in ['very_low', 'very_high']:
weight_adjustments['exercise'] = 3.0
elif extremities['exercise'][0] in ['low', 'high']:
weight_adjustments['exercise'] = 2.0
# 經驗需求權重調整
if user_prefs.experience_level == 'beginner':
weight_adjustments['experience'] = 2.5
elif user_prefs.experience_level == 'advanced':
weight_adjustments['experience'] = 2.0
# 應用權重調整
final_weights = base_weights.copy()
for key, adjustment in weight_adjustments.items():
final_weights[key] *= adjustment
return final_weights
def apply_special_case_adjustments(score):
"""處理特殊情況,更嚴格的條件組合評估"""
severity = 1.0
# 空間與運動組合的嚴格評估
if user_prefs.living_space == 'apartment':
if breed_info.get('Exercise Needs', 'MODERATE').upper() == 'VERY HIGH':
severity *= 0.5 # 更嚴重的懲罰
elif breed_info.get('Exercise Needs') == 'HIGH':
severity *= 0.6
if breed_info['Size'] in ['Large', 'Giant']:
severity *= 0.5
# 經驗與品種難度組合的嚴格評估
if user_prefs.experience_level == 'beginner':
if breed_info.get('Care Level') == 'HIGH':
if user_prefs.has_children:
severity *= 0.5
else:
severity *= 0.6
# 時間限制與需求組合的嚴格評估
if user_prefs.time_availability == 'limited':
if breed_info.get('Exercise Needs').upper() in ['VERY HIGH', 'HIGH']:
severity *= 0.6
# 運動類型不匹配的懲罰
if user_prefs.exercise_time > 120:
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
if exercise_needs == 'LOW':
severity *= 0.7
elif exercise_needs == 'VERY HIGH' and user_prefs.exercise_type == 'light_walks':
severity *= 0.6
return score * severity
# 評估完美匹配條件
perfect_conditions = evaluate_perfect_conditions()
# 計算動態權重
weights = calculate_weights()
# 正規化權重
total_weight = sum(weights.values())
normalized_weights = {k: v/total_weight for k, v in weights.items()}
# 計算基礎分數
base_score = sum(scores[k] * normalized_weights[k] for k in scores.keys())
# 完美匹配獎勵計算(降低獎勵影響)
perfect_bonus = 1.0
perfect_bonus += 0.12 * perfect_conditions['size_match']
perfect_bonus += 0.12 * perfect_conditions['exercise_match']
perfect_bonus += 0.12 * perfect_conditions['experience_match']
perfect_bonus += 0.04 * perfect_conditions['living_condition_match']
# 品種特性加成
breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
# 計算最終分數
final_score = (base_score * 0.85 + breed_bonus * 0.15) * perfect_bonus
# 應用特殊情況調整
final_score = apply_special_case_adjustments(final_score)
return min(1.0, final_score)
def amplify_score_extreme(score: float) -> float:
"""
- 完美匹配可達到95-99%
- 優秀匹配在90-95%
- 良好匹配在85-90%
- 一般匹配在75-85%
- 較差匹配在65-75%
- 極差匹配在50-65%
"""
def smooth_curve(x: float, steepness: float = 12) -> float:
"""使用sigmoid curve"""
import math
return 1 / (1 + math.exp(-steepness * (x - 0.5)))
if score >= 0.9:
# 完美匹配:95-99%
position = (score - 0.9) / 0.1
return 0.95 + (position * 0.04)
elif score >= 0.8:
# 優秀匹配:90-95%
position = (score - 0.8) / 0.1
return 0.90 + (position * 0.05)
elif score >= 0.7:
# 良好匹配:85-90%
position = (score - 0.7) / 0.1
return 0.85 + (position * 0.05)
elif score >= 0.5:
# 一般匹配:75-85%
position = (score - 0.5) / 0.2
base = 0.75
return base + (smooth_curve(position) * 0.10)
elif score >= 0.3:
# 較差匹配:65-75%
position = (score - 0.3) / 0.2
base = 0.65
return base + (smooth_curve(position) * 0.10)
else:
# 極差匹配:50-65%
position = score / 0.3
base = 0.50
return base + (smooth_curve(position) * 0.15)