Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import gradio as gr | |
| import time | |
| import spaces | |
| import timm | |
| from torchvision.ops import nms, box_iou | |
| import torch.nn.functional as F | |
| from torchvision import transforms | |
| from PIL import Image, ImageDraw, ImageFont, ImageFilter | |
| from sentence_transformers import SentenceTransformer | |
| from urllib.parse import quote | |
| from ultralytics import YOLO | |
| import asyncio | |
| import traceback | |
| from breed_health_info import breed_health_info | |
| from breed_noise_info import breed_noise_info | |
| from dog_database import get_dog_description | |
| from scoring_calculation_system import UserPreferences, calculate_compatibility_score | |
| from recommendation_html_format import format_recommendation_html, get_breed_recommendations | |
| from history_manager import UserHistoryManager | |
| from search_history import create_history_tab, create_history_component | |
| from styles import get_css_styles | |
| from breed_detection import create_detection_tab | |
| from breed_comparison import create_comparison_tab | |
| from breed_recommendation_enhanced import create_recommendation_tab | |
| from breed_visualization import create_visualization_tab | |
| from style_transfer import DogStyleTransfer, create_style_transfer_tab | |
| from html_templates import ( | |
| format_description_html, | |
| format_single_dog_result, | |
| format_multiple_breeds_result, | |
| format_unknown_breed_message, | |
| format_not_dog_message, | |
| format_hint_html, | |
| format_multi_dog_container, | |
| format_breed_details_html, | |
| get_color_scheme, | |
| get_akc_breeds_link | |
| ) | |
| from model_architecture import BaseModel, dog_breeds | |
| history_manager = UserHistoryManager() | |
| class ModelManager: | |
| """ | |
| Enhanced Singleton class for managing model instances and device allocation | |
| specifically designed for Hugging Face Spaces deployment. | |
| Includes support for multi-dimensional recommendation system. | |
| """ | |
| _instance = None | |
| _initialized = False | |
| _yolo_model = None | |
| _breed_model = None | |
| _device = None | |
| _sbert_model = None | |
| _config_manager = None | |
| _enhanced_system_initialized = False | |
| def __new__(cls): | |
| if cls._instance is None: | |
| cls._instance = super().__new__(cls) | |
| return cls._instance | |
| def __init__(self): | |
| if not ModelManager._initialized: | |
| self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| ModelManager._initialized = True | |
| # Initialize enhanced recommendation system | |
| self._initialize_enhanced_system() | |
| def device(self): | |
| if self._device is None: | |
| self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| return self._device | |
| def yolo_model(self): | |
| if self._yolo_model is None: | |
| self._yolo_model = YOLO('yolov8x.pt') | |
| return self._yolo_model | |
| def breed_model(self): | |
| if self._breed_model is None: | |
| self._breed_model = BaseModel( | |
| num_classes=len(dog_breeds), | |
| device=self.device | |
| ).to(self.device) | |
| checkpoint = torch.load( | |
| 'ConvNextV2Base_best_model.pth', | |
| map_location=self.device | |
| ) | |
| # Try to load with model_state_dict first, then base_model | |
| if 'model_state_dict' in checkpoint: | |
| self._breed_model.load_state_dict(checkpoint['model_state_dict'], strict=False) | |
| elif 'base_model' in checkpoint: | |
| self._breed_model.load_state_dict(checkpoint['base_model'], strict=False) | |
| else: | |
| # If neither key exists, raise a descriptive error | |
| available_keys = list(checkpoint.keys()) if isinstance(checkpoint, dict) else "not a dictionary" | |
| raise KeyError(f"Model checkpoint does not contain 'model_state_dict' or 'base_model' keys. Available keys: {available_keys}") | |
| self._breed_model.eval() | |
| return self._breed_model | |
| def _initialize_enhanced_system(self): | |
| """Initialize enhanced multi-dimensional recommendation system""" | |
| if ModelManager._enhanced_system_initialized: | |
| return | |
| try: | |
| # Defer SBERT model loading until needed in GPU context | |
| # This prevents CUDA initialization issues in ZeroGPU environment | |
| self._sbert_model = None # Will be loaded lazily | |
| self._sbert_loading_attempted = False | |
| ModelManager._enhanced_system_initialized = True | |
| print("Enhanced recommendation system initialized (SBERT loading deferred)") | |
| except ImportError as e: | |
| print(f"Enhanced modules not available: {str(e)}") | |
| ModelManager._enhanced_system_initialized = True # Mark as attempted | |
| except Exception as e: | |
| print(f"Enhanced system initialization failed: {str(e)}") | |
| print(traceback.format_exc()) | |
| ModelManager._enhanced_system_initialized = True # Mark as attempted | |
| def _load_sbert_model_if_needed(self): | |
| """Load SBERT model in GPU context if not already loaded""" | |
| if self._sbert_model is not None or self._sbert_loading_attempted: | |
| return self._sbert_model | |
| try: | |
| # Initialize SBERT model for semantic analysis | |
| print("Loading SBERT model in GPU context...") | |
| model_name = 'all-MiniLM-L6-v2' | |
| fallback_models = ['all-mpnet-base-v2', 'all-MiniLM-L12-v2'] | |
| for model_name_attempt in [model_name] + fallback_models: | |
| try: | |
| self._sbert_model = SentenceTransformer(model_name_attempt, device='cuda' if torch.cuda.is_available() else 'cpu') | |
| print(f"SBERT model {model_name_attempt} loaded successfully in GPU context") | |
| return self._sbert_model | |
| except Exception as e: | |
| print(f"Failed to load SBERT model {model_name_attempt}: {str(e)}") | |
| continue | |
| print("All SBERT models failed to load, enhanced system will use keyword-only analysis") | |
| return None | |
| except Exception as e: | |
| print(f"SBERT initialization failed: {str(e)}") | |
| return None | |
| finally: | |
| self._sbert_loading_attempted = True | |
| def sbert_model(self): | |
| """Get SBERT model for semantic analysis""" | |
| if not ModelManager._enhanced_system_initialized: | |
| self._initialize_enhanced_system() | |
| return self._load_sbert_model_if_needed() | |
| def config_manager(self): | |
| """Get configuration manager (simplified)""" | |
| if not ModelManager._enhanced_system_initialized: | |
| self._initialize_enhanced_system() | |
| return None # Simplified - no config manager needed | |
| def enhanced_system_available(self): | |
| """Check if enhanced recommendation system is available""" | |
| return (ModelManager._enhanced_system_initialized and | |
| self._sbert_model is not None) | |
| def get_system_status(self): | |
| """Get status of all managed models and systems""" | |
| return { | |
| 'device': str(self.device), | |
| 'yolo_model_loaded': self._yolo_model is not None, | |
| 'breed_model_loaded': self._breed_model is not None, | |
| 'sbert_model_loaded': self._sbert_model is not None, | |
| 'config_manager_available': False, # Simplified system | |
| 'enhanced_system_initialized': ModelManager._enhanced_system_initialized, | |
| 'enhanced_system_available': self.enhanced_system_available | |
| } | |
| # Initialize model manager | |
| model_manager = ModelManager() | |
| def preprocess_image(image): | |
| """Preprocesses images for model input""" | |
| if isinstance(image, np.ndarray): | |
| image = Image.fromarray(image) | |
| transform = transforms.Compose([ | |
| transforms.Resize((224, 224)), | |
| transforms.ToTensor(), | |
| transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
| ]) | |
| return transform(image).unsqueeze(0) | |
| def predict_single_dog(image): | |
| """Predicts dog breed for a single image""" | |
| image_tensor = preprocess_image(image).to(model_manager.device) | |
| with torch.no_grad(): | |
| logits = model_manager.breed_model(image_tensor)[0] | |
| probs = F.softmax(logits, dim=1) | |
| top5_prob, top5_idx = torch.topk(probs, k=5) | |
| breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]] | |
| probabilities = [prob.item() for prob in top5_prob[0]] | |
| sum_probs = sum(probabilities[:3]) | |
| relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]] | |
| return probabilities[0], breeds[:3], relative_probs | |
| def enhanced_preprocess(image, is_standing=False, has_overlap=False): | |
| """ | |
| Enhanced image preprocessing function with special handling for different poses | |
| and overlapping cases. | |
| """ | |
| target_size = 224 | |
| w, h = image.size | |
| if is_standing: | |
| if h > w * 1.5: | |
| new_h = target_size | |
| new_w = min(target_size, int(w * (target_size / h))) | |
| new_w = max(new_w, int(target_size * 0.6)) | |
| elif has_overlap: | |
| scale = min(target_size/w, target_size/h) * 0.95 | |
| new_w = int(w * scale) | |
| new_h = int(h * scale) | |
| else: | |
| scale = min(target_size/w, target_size/h) | |
| new_w = int(w * scale) | |
| new_h = int(h * scale) | |
| resized = image.resize((new_w, new_h), Image.Resampling.LANCZOS) | |
| final_image = Image.new('RGB', (target_size, target_size), (240, 240, 240)) | |
| paste_x = (target_size - new_w) // 2 | |
| paste_y = (target_size - new_h) // 2 | |
| final_image.paste(resized, (paste_x, paste_y)) | |
| return final_image | |
| def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.3): | |
| """ | |
| Enhanced multiple dog detection with improved bounding box handling and | |
| intelligent boundary adjustments. | |
| """ | |
| results = model_manager.yolo_model(image, conf=conf_threshold, iou=iou_threshold)[0] | |
| img_width, img_height = image.size | |
| detected_boxes = [] | |
| # Phase 1: Initial detection and processing | |
| for box in results.boxes: | |
| if box.cls.item() == 16: # Dog class | |
| xyxy = box.xyxy[0].tolist() | |
| confidence = box.conf.item() | |
| x1, y1, x2, y2 = map(int, xyxy) | |
| w = x2 - x1 | |
| h = y2 - y1 | |
| detected_boxes.append({ | |
| 'coords': [x1, y1, x2, y2], | |
| 'width': w, | |
| 'height': h, | |
| 'center_x': (x1 + x2) / 2, | |
| 'center_y': (y1 + y2) / 2, | |
| 'area': w * h, | |
| 'confidence': confidence, | |
| 'aspect_ratio': w / h if h != 0 else 1 | |
| }) | |
| if not detected_boxes: | |
| return [(image, 1.0, [0, 0, img_width, img_height], False)] | |
| # Phase 2: Analysis of detection relationships | |
| avg_height = sum(box['height'] for box in detected_boxes) / len(detected_boxes) | |
| avg_width = sum(box['width'] for box in detected_boxes) / len(detected_boxes) | |
| avg_area = sum(box['area'] for box in detected_boxes) / len(detected_boxes) | |
| def calculate_iou(box1, box2): | |
| x1 = max(box1['coords'][0], box2['coords'][0]) | |
| y1 = max(box1['coords'][1], box2['coords'][1]) | |
| x2 = min(box1['coords'][2], box2['coords'][2]) | |
| y2 = min(box1['coords'][3], box2['coords'][3]) | |
| if x2 <= x1 or y2 <= y1: | |
| return 0.0 | |
| intersection = (x2 - x1) * (y2 - y1) | |
| area1 = box1['area'] | |
| area2 = box2['area'] | |
| return intersection / (area1 + area2 - intersection) | |
| # Phase 3: Processing each detection | |
| processed_boxes = [] | |
| overlap_threshold = 0.2 | |
| for i, box_info in enumerate(detected_boxes): | |
| x1, y1, x2, y2 = box_info['coords'] | |
| w = box_info['width'] | |
| h = box_info['height'] | |
| center_x = box_info['center_x'] | |
| center_y = box_info['center_y'] | |
| # Check for overlaps | |
| has_overlap = False | |
| for j, other_box in enumerate(detected_boxes): | |
| if i != j and calculate_iou(box_info, other_box) > overlap_threshold: | |
| has_overlap = True | |
| break | |
| # Adjust expansion strategy | |
| base_expansion = 0.03 | |
| max_expansion = 0.05 | |
| is_standing = h > 1.5 * w | |
| is_sitting = 0.8 <= h/w <= 1.2 | |
| is_abnormal_size = (h * w) > (avg_area * 1.5) or (h * w) < (avg_area * 0.5) | |
| if has_overlap: | |
| h_expansion = w_expansion = base_expansion * 0.8 | |
| else: | |
| if is_standing: | |
| h_expansion = min(base_expansion * 1.2, max_expansion) | |
| w_expansion = base_expansion | |
| elif is_sitting: | |
| h_expansion = w_expansion = base_expansion | |
| else: | |
| h_expansion = w_expansion = base_expansion * 0.9 | |
| # Position compensation | |
| if center_x < img_width * 0.2 or center_x > img_width * 0.8: | |
| w_expansion *= 0.9 | |
| if is_abnormal_size: | |
| h_expansion *= 0.8 | |
| w_expansion *= 0.8 | |
| # Calculate final bounding box | |
| expansion_w = w * w_expansion | |
| expansion_h = h * h_expansion | |
| new_x1 = max(0, center_x - (w + expansion_w)/2) | |
| new_y1 = max(0, center_y - (h + expansion_h)/2) | |
| new_x2 = min(img_width, center_x + (w + expansion_w)/2) | |
| new_y2 = min(img_height, center_y + (h + expansion_h)/2) | |
| # Crop and process image | |
| cropped_image = image.crop((int(new_x1), int(new_y1), | |
| int(new_x2), int(new_y2))) | |
| processed_image = enhanced_preprocess( | |
| cropped_image, | |
| is_standing=is_standing, | |
| has_overlap=has_overlap | |
| ) | |
| processed_boxes.append(( | |
| processed_image, | |
| box_info['confidence'], | |
| [new_x1, new_y1, new_x2, new_y2], | |
| True | |
| )) | |
| return processed_boxes | |
| def predict(image): | |
| """ | |
| Main prediction function that handles both single and multiple dog detection. | |
| Args: | |
| image: PIL Image or numpy array | |
| Returns: | |
| tuple: (html_output, annotated_image, initial_state) | |
| """ | |
| if image is None: | |
| return format_hint_html("Please upload an image to start."), None, None | |
| try: | |
| if isinstance(image, np.ndarray): | |
| image = Image.fromarray(image) | |
| # 檢測圖片中的物體 | |
| dogs = detect_multiple_dogs(image) | |
| color_scheme = get_color_scheme(len(dogs) == 1) | |
| # 準備標註 | |
| annotated_image = image.copy() | |
| draw = ImageDraw.Draw(annotated_image) | |
| try: | |
| font = ImageFont.truetype("arial.ttf", 24) | |
| except: | |
| font = ImageFont.load_default() | |
| dogs_info = "" | |
| # 處理每個檢測到的物體 | |
| for i, (cropped_image, detection_confidence, box, is_dog) in enumerate(dogs): | |
| print(f"Predict processing - Object {i+1}:") | |
| print(f" Is dog: {is_dog}") | |
| print(f" Detection confidence: {detection_confidence:.4f}") | |
| # 如果是狗且進行品種預測 | |
| if is_dog: | |
| top1_prob, topk_breeds, relative_probs = predict_single_dog(cropped_image) | |
| print(f" Breed prediction - Top probability: {top1_prob:.4f}") | |
| print(f" Top breeds: {topk_breeds[:3]}") | |
| color = color_scheme if len(dogs) == 1 else color_scheme[i % len(color_scheme)] | |
| # 繪製框和標籤 | |
| draw.rectangle(box, outline=color, width=4) | |
| label = f"Dog {i+1}" if is_dog else f"Object {i+1}" | |
| label_bbox = draw.textbbox((0, 0), label, font=font) | |
| label_width = label_bbox[2] - label_bbox[0] | |
| label_height = label_bbox[3] - label_bbox[1] | |
| # 繪製標籤背景和文字 | |
| label_x = box[0] + 5 | |
| label_y = box[1] + 5 | |
| draw.rectangle( | |
| [label_x - 2, label_y - 2, label_x + label_width + 4, label_y + label_height + 4], | |
| fill='white', | |
| outline=color, | |
| width=2 | |
| ) | |
| draw.text((label_x, label_y), label, fill=color, font=font) | |
| try: | |
| # 首先檢查是否為狗 | |
| if not is_dog: | |
| dogs_info += format_not_dog_message(color, i+1) | |
| continue | |
| # 如果是狗,進行品種預測 | |
| top1_prob, topk_breeds, relative_probs = predict_single_dog(cropped_image) | |
| combined_confidence = detection_confidence * top1_prob | |
| # 根據信心度決定輸出格式 | |
| if combined_confidence < 0.15: | |
| dogs_info += format_unknown_breed_message(color, i+1) | |
| elif top1_prob >= 0.4: | |
| breed = topk_breeds[0] | |
| description = get_dog_description(breed) | |
| if description is None: | |
| description = { | |
| "Name": breed, | |
| "Size": "Unknown", | |
| "Exercise Needs": "Unknown", | |
| "Grooming Needs": "Unknown", | |
| "Care Level": "Unknown", | |
| "Good with Children": "Unknown", | |
| "Description": f"Identified as {breed.replace('_', ' ')}" | |
| } | |
| dogs_info += format_single_dog_result(breed, description, color) | |
| else: | |
| dogs_info += format_multiple_breeds_result( | |
| topk_breeds, | |
| relative_probs, | |
| color, | |
| i+1, | |
| lambda breed: get_dog_description(breed) or { | |
| "Name": breed, | |
| "Size": "Unknown", | |
| "Exercise Needs": "Unknown", | |
| "Grooming Needs": "Unknown", | |
| "Care Level": "Unknown", | |
| "Good with Children": "Unknown", | |
| "Description": f"Identified as {breed.replace('_', ' ')}" | |
| } | |
| ) | |
| except Exception as e: | |
| print(f"Error formatting results for dog {i+1}: {str(e)}") | |
| dogs_info += format_unknown_breed_message(color, i+1) | |
| # 包裝最終的HTML輸出 | |
| html_output = format_multi_dog_container(dogs_info) | |
| # 準備初始狀態 | |
| initial_state = { | |
| "dogs_info": dogs_info, | |
| "image": annotated_image, | |
| "is_multi_dog": len(dogs) > 1, | |
| "html_output": html_output | |
| } | |
| return html_output, annotated_image, initial_state | |
| except Exception as e: | |
| error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}" | |
| print(error_msg) | |
| return format_hint_html(error_msg), None, None | |
| def show_details_html(choice, previous_output, initial_state): | |
| """ | |
| Generate detailed HTML view for a selected breed. | |
| Args: | |
| choice: str, Selected breed option | |
| previous_output: str, Previous HTML output | |
| initial_state: dict, Current state information | |
| Returns: | |
| tuple: (html_output, gradio_update, updated_state) | |
| """ | |
| if not choice: | |
| return previous_output, gr.update(visible=True), initial_state | |
| try: | |
| breed = choice.split("More about ")[-1] | |
| description = get_dog_description(breed) | |
| html_output = format_breed_details_html(description, breed) | |
| # Update state | |
| initial_state["current_description"] = html_output | |
| initial_state["original_buttons"] = initial_state.get("buttons", []) | |
| return html_output, gr.update(visible=True), initial_state | |
| except Exception as e: | |
| error_msg = f"An error occurred while showing details: {e}" | |
| print(error_msg) | |
| return format_hint_html(error_msg), gr.update(visible=True), initial_state | |
| def main(): | |
| with gr.Blocks(css=get_css_styles()) as iface: | |
| # Header HTML | |
| gr.HTML(""" | |
| <header style='text-align: center; padding: 20px; margin-bottom: 20px;'> | |
| <h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'> | |
| 🐾 PawMatch AI | |
| </h1> | |
| <h2 style='font-size: 1.2em; font-weight: normal; color: #4A5568; margin-top: 5px;'> | |
| Your Smart Dog Breed Guide | |
| </h2> | |
| <div style='width: 50px; height: 3px; background: linear-gradient(90deg, #4299e1, #48bb78); margin: 15px auto;'></div> | |
| <p style='color: #718096; font-size: 0.9em;'> | |
| Powered by AI • Breed Recognition • Smart Matching • Companion Guide | |
| </p> | |
| </header> | |
| """) | |
| # 先創建歷史組件實例(但不創建標籤頁) | |
| history_component = create_history_component() | |
| # Initialize style transfor | |
| dog_style_transfer = DogStyleTransfer() | |
| with gr.Tabs(): | |
| # 1. breed detection | |
| example_images = [ | |
| 'Border_Collie.jpg', | |
| 'Golden_Retriever.jpeg', | |
| 'Saint_Bernard.jpeg', | |
| 'Samoyed.jpeg', | |
| 'French_Bulldog.jpeg' | |
| ] | |
| detection_components = create_detection_tab(predict, example_images) | |
| # 2. breed comparison | |
| comparison_components = create_comparison_tab( | |
| dog_breeds=dog_breeds, | |
| get_dog_description=get_dog_description, | |
| breed_health_info=breed_health_info, | |
| breed_noise_info=breed_noise_info | |
| ) | |
| # 3. breed recommendation | |
| recommendation_components = create_recommendation_tab( | |
| UserPreferences=UserPreferences, | |
| get_breed_recommendations=get_breed_recommendations, | |
| format_recommendation_html=format_recommendation_html, | |
| history_component=history_component | |
| ) | |
| # 4. Visualization Analysis | |
| with gr.Tab("Visualization Analysis"): | |
| create_visualization_tab( | |
| dog_breeds=dog_breeds, | |
| get_dog_description=get_dog_description, | |
| calculate_compatibility_score=calculate_compatibility_score, | |
| UserPreferences=UserPreferences | |
| ) | |
| # 5. Style Transfer tab | |
| with gr.Tab("Style Transfer"): | |
| style_transfer_components = create_style_transfer_tab(dog_style_transfer) | |
| # 6. History Search | |
| create_history_tab(history_component) | |
| # Footer | |
| gr.HTML(''' | |
| <div style=" | |
| display: flex; | |
| align-items: center; | |
| justify-content: center; | |
| gap: 20px; | |
| padding: 20px 0; | |
| "> | |
| <p style=" | |
| font-family: 'Arial', sans-serif; | |
| font-size: 14px; | |
| font-weight: 500; | |
| letter-spacing: 2px; | |
| background: linear-gradient(90deg, #555, #007ACC); | |
| -webkit-background-clip: text; | |
| -webkit-text-fill-color: transparent; | |
| margin: 0; | |
| text-transform: uppercase; | |
| display: inline-block; | |
| ">EXPLORE THE CODE →</p> | |
| <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/PawMatchAI" style="text-decoration: none;"> | |
| <img src="https://img.shields.io/badge/GitHub-PawMatch_AI-007ACC?logo=github&style=for-the-badge"> | |
| </a> | |
| </div> | |
| ''') | |
| return iface | |
| if __name__ == "__main__": | |
| iface = main() | |
| iface.launch() |