DawnC commited on
Commit
37f6bf3
Β·
verified Β·
1 Parent(s): bb7e8e1

Upload 5 files

Browse files

Upload needed files

British_Shorthair(/350/213/261/345/234/213/347/237/255/346/257/233/350/262/223).jpg ADDED
Samoyed(/350/226/251/346/221/251/350/200/266).jpg ADDED
app.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torchvision import transforms
3
+ from torchvision import models
4
+ from PIL import Image
5
+ import gradio as gr
6
+ import os
7
+
8
+ # Use CPU
9
+ device = torch.device('cpu')
10
+
11
+ # Load the model ResNet-50 model architecture
12
+ model = models.resnet50(pretrained=False)
13
+
14
+ # Load model's weight to CPU
15
+ model = torch.load('resnet50_model_weights.pth', map_location=device)
16
+ model.eval()
17
+
18
+ # Define the image preprocessing
19
+ transform = transforms.Compose([
20
+ transforms.Resize((224, 224)),
21
+ transforms.ToTensor(),
22
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
23
+ ])
24
+
25
+ # Define the class names
26
+ class_names = ['Abyssinian', 'American Bulldog', 'American Pit Bull Terrier', 'Basset Hound', 'Beagle', 'Bengal', 'Birman', 'Bombay',
27
+ 'Boxer', 'British Shorthair', 'Chihuahua', 'Egyptian Mau', 'English Cocker Spaniel', 'English Setter', 'German Shorthaired',
28
+ 'Great Pyrenees', 'Havanese', 'Japanese Chin', 'Keeshond', 'Leonberger', 'Maine Coon', 'Miniature Pinscher', 'Newfoundland',
29
+ 'Persian', 'Pomeranian', 'Pug', 'Ragdoll', 'Russian Blue', 'Saint Bernard', 'Samoyed', 'Scottish Terrier', 'Shiba Inu',
30
+ 'Siamese', 'Sphynx', 'Staffordshire Bull Terrier', 'Wheaten Terrier', 'Yorkshire Terrier']
31
+
32
+ # Define the predict function
33
+ def classify_image(image):
34
+ image = transform(image).unsqueeze(0).to(device) # Ensure image data is processed on CPU
35
+ with torch.no_grad():
36
+ outputs = model(image)
37
+ _, predicted = torch.max(outputs, 1)
38
+ return class_names[predicted.item()]
39
+
40
+ # Custom Gradio interface title, description, and article
41
+ title = 'Oxford Pet πŸˆπŸ•'
42
+ description = 'A ResNet50-based computer vision model for classifying images of pets from the Oxford-IIIT Pet Dataset. The model can recognize 37 different pet breeds, including cats and dogs.'
43
+ article = 'https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/The%20Oxford-IIIT%20Pet%20Project'
44
+
45
+ # Gradio interface
46
+ examples = [["examples/" + img] for img in os.listdir('examples')]
47
+
48
+ demo = gr.Interface(fn=classify_image, # Map input to output function
49
+ inputs=gr.Image(type="pil"), # Image input
50
+ outputs=[gr.Label(num_top_classes=1, label="Predictions")], # Predicted label
51
+ examples=examples, # Example images
52
+ title=title,
53
+ description=description,
54
+ article=article)
55
+
56
+ # Launch the demo
57
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ torch==2.3.0
2
+ torchvision==0.18.0
3
+ gradio==4.42.0
4
+ Pillow==9.2.0
resnet50_model_weights.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa799a82adff86b3fe384f7b86e925d75e8f434255cff9464b2ceeeec1cd5b69
3
+ size 94657902