Streamlit_Demo / utils.py
Davies's picture
we added app.py, requirements and utils.py
f6e2254
raw
history blame
535 Bytes
import numpy as np
import torch
from huggan.pytorch.lightweight_gan.lightweight_gan import LightweightGAN
def carga_modelo(modelo_name ="ceyda/butterfly_cropped_uniq1K_512", model_version =None):
gan = LightweightGAN.from_pretrained(model_name, version =model_version)
gan.eval()
return gan
def genera(gan, batch_size =1):
with torch.no_grad():
ims = gan.G(torch.randn(batch_size, gan.latent_dim)).clamp_(0.0, 1.0)*255
ims = ims.permute(0,2,3,1).deatch().cpu().numpy().astype(np.uint8)
return ims