avaliaFACTOR / app.py
DavidSB's picture
Update app.py (#8)
d3499b2
raw
history blame
41.5 kB
# importando bibliotecas necessárias
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import gradio as gr
from gradio import components
from gradio import Interface
import xlsxwriter
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph
from reportlab.lib.styles import getSampleStyleSheet
import shutil
import os
import plotly.express as px
import ast
#-----------------#
#função para relatórios em pdf
def save_results_to_pdf(results_formatados, intervalo_confiança, valores_finais, image):
doc = SimpleDocTemplate("resultados.pdf", pagesize=letter)
styles = getSampleStyleSheet()
story = [
Image('avaliase.jpg', width=3.33 * inch, height=1.28 * inch),
Spacer(1, 36),
Paragraph('Relatório', styles['Heading1']),
Spacer(1, 36),
Paragraph('Resultados Estatísticos', styles['Heading2'])]
lines = results_formatados.splitlines()
# Create a paragraph for each line
for line in lines:
story.append(Paragraph(line, styles['Normal']))
story.append(Spacer(1, 36))
story.append(Paragraph('Intervalo de Confiança', styles['Heading2']))
lines = intervalo_confiança.splitlines()
for line in lines:
story.append(Paragraph(line, styles['Normal']))
story.append(Spacer(1, 36))
story.append(Paragraph('Valores Finais', styles['Heading2']))
lines = valores_finais.splitlines()
for line in lines:
story.append(Paragraph(line, styles['Normal']))
story.append(Spacer(1, 36))
story.append(Image('scatter_plot.png', width=4 * inch, height=4 * inch))
doc.build(story)
#-----------------#
#função para criar um mapa no plotly
def plotar_mapa_com_dois_dataframes(df1, df2):
fig1 = px.scatter_mapbox(
df1,
lat='lat',
lon='lon',
zoom=12.5,
center={"lat": df1['lat'].mean(), "lon": df1['lon'].mean()},
color_discrete_sequence=['blue'],
)
fig1.update_traces(marker=dict(size=10)) # Define o tamanho dos marcadores para o DataFrame 1
fig2 = px.scatter_mapbox(
df2,
lat='lat',
lon='lon',
color_discrete_sequence=['red'],
)
fig2.update_traces(marker=dict(size=20)) # Define o tamanho dos marcadores para o DataFrame 2
# Combine as duas figuras em uma única figura
for data in fig2.data:
fig1.add_trace(data)
# Personalize o layout do mapa, se desejar
fig1.update_layout(
mapbox_style="open-street-map",
)
# Mostrar o mapa
fig1.show()
return fig1
#-----------------#
def grafico_barras(data):
# Calcular a média da coluna 'Vunit_hom'
media = data['Vunit_hom'].mean()
# Calcular o percentual de distância à média para cada ponto
data['Percentual_Distancia'] = round(((data['Vunit_hom'] - media) / media) * 100, 1)
# Criar o gráfico de dispersão em relação à média com rótulos
plt.figure(figsize=(8, 8)) # Define o tamanho da figura (opcional)
plt.bar(data['ordem'], data['Percentual_Distancia'], color = 'gray')
# Adicionar rótulos com percentual de distância à média
for i, Percentual_Distancia in enumerate(data['Percentual_Distancia']):
plt.text(data['ordem'][i], Percentual_Distancia, f'{Percentual_Distancia}%', ha='center', va='bottom', fontsize = 12)
# Configurações de gráfico
plt.title('Distância percentual dos dados homogeneizados à média saneada')
plt.xlabel('Ordem dos dados')
plt.ylabel('% de distância à média')
plt.legend()
# Salvar o gráfico como uma imagem (por exemplo, em formato PNG)
plt.savefig('scatter_plot.png') # Escolha o nome e o formato do arquivo desejado
# Mostrar o gráfico
plt.show()
#-----------------#
# Função de avaliação do imóvel
def avaliacao_imovel(planilha, num_linhas_desejadas=3, finalidade='Defina o tipo de imovel',
caract_avaliando='Defina o item 1 de Fundamentação', ident_dados='Defina o item 3 de Fundamentação'):
# INPUT AVALIANDO
# Lendo a aba 'avaliando' da planilha
df_avaliando = pd.read_excel(planilha.name, 'avaliando')
# Verificar se a coluna 'Coordenadas' contém valores válidos (não NaN)
df_avaliando['Coordenadas'] = df_avaliando['Coordenadas'].apply(lambda x: ast.literal_eval(x) if not pd.isna(x) else np.nan)
# Criando as colunas "lat" e "lon" a partir da coluna "Coordenadas" ou definindo como NaN se estiver vazia
df_avaliando['lat'] = df_avaliando['Coordenadas'].apply(lambda x: round(x[0], 5) if not pd.isna(x) else np.nan)
df_avaliando['lon'] = df_avaliando['Coordenadas'].apply(lambda x: round(x[1], 5) if not pd.isna(x) else np.nan)
# Excluindo a coluna 'Coordenadas' se você não precisar dela mais
df_avaliando = df_avaliando.drop('Coordenadas', axis=1)
# INPUT DADOS
# Lendo a aba 'dados' da planilha, limitando o número de linhas
df_dados = pd.read_excel(planilha.name, 'dados').iloc[:int(num_linhas_desejadas)]
# Verificar se a coluna 'Coordenadas' contém valores válidos (não NaN)
df_dados['Coordenadas'] = df_dados['Coordenadas'].apply(lambda x: ast.literal_eval(x) if not pd.isna(x) else np.nan)
# Criando as colunas "lat" e "lon" a partir da coluna "Coordenadas" ou definindo como NaN se estiver vazia
df_dados['lat'] = df_dados['Coordenadas'].apply(lambda x: round(x[0], 5) if not pd.isna(x) else np.nan)
df_dados['lon'] = df_dados['Coordenadas'].apply(lambda x: round(x[1], 5) if not pd.isna(x) else np.nan)
# Excluindo a coluna 'Coordenadas' se você não precisar dela mais
df_dados = df_dados.drop('Coordenadas', axis=1)
#-----------------#
# fator de atratividade local (fal)
df_transp = df_dados.copy()
df_transp = df_transp[['Atratividade local']]
# Verificação se o valor é zero
if df_avaliando['Atratividade local'][0] == 0:
df_transp['fal'] = 1
else:
df_transp['fal'] = round(df_avaliando['Atratividade local'][0] / df_transp['Atratividade local'], 2)
df_transp = df_transp[['fal']]
#-----------------#
# fator de correção da área construída (fac)
df_area_const = df_dados.copy()
df_area_const = df_area_const[['Área Construída']]
df_area_const['razao'] = (df_area_const['Área Construída'] / df_avaliando['Área Construída'][0])
df_area_const['dif'] = abs(df_area_const['Área Construída'] - df_avaliando['Área Construída'][0])
# 30% da área do terreno do avaliando
x_ac = 0.3 * df_avaliando['Área Construída'][0]
# coeficiente n conforme a diferença entre a área do avaliando e dos dados
df_area_const['n'] = df_area_const['dif'].apply(lambda dif: 0.250 if dif <= x_ac else 0.125)
# Verificação se o valor é zero
if df_avaliando['Área Construída'][0] == 0:
df_area_const['fac'] = 1
else:
df_area_const['fac'] = round((df_area_const['razao']) ** (df_area_const['n']), 2)
df_area_const = df_area_const[['fac']]
#-----------------#
# fator de correção da área do terreno (fat)
df_area_terreno = df_dados.copy()
df_area_terreno = df_area_terreno[['Área Terreno']]
df_area_terreno['razao'] = (df_area_terreno['Área Terreno'] / df_avaliando['Área Terreno'][0])
df_area_terreno['dif'] = abs(df_area_terreno['Área Terreno'] - df_avaliando['Área Terreno'][0])
# 30% da área do terreno do avaliando
x_at = 0.3 * df_avaliando['Área Terreno'][0]
# coeficiente n conforme a diferença entre a área do avaliando e dos dados
df_area_terreno['n'] = df_area_terreno['dif'].apply(lambda dif: 0.250 if dif <= x_at else 0.125)
# Verificação se o valor é zero
if df_avaliando['Área Terreno'][0] == 0:
df_area_terreno['fat'] = 1
else:
df_area_terreno['fat'] = round((df_area_terreno['razao']) ** (df_area_terreno['n']), 2)
df_area_terreno = df_area_terreno[['fat']]
#-----------------#
# fator profundidade (fpe)
# Define a função coeficiente_profundidade antes de criar os DataFrames
def coeficiente_profundidade(row):
A = row['Área Terreno']
t = row['Testada']
pe = round(A/t, 2)
hipotese_1 = A > 5000 and pe > 90
hipotese_2 = A <= 5000 or (A > 5000 and pe <= 90)
if t == 0:
coef_pe = 1
else:
if finalidade == "Tipologias com área construída":
coef_pe = 1
else:
if hipotese_1:
coef_pe = round(4.8 * (t ** 0.2) * (A ** -0.4), 3)
else:
if pe < 20:
coef_pe = round((pe/20) ** 0.5, 3)
elif 20 <= pe < 33:
coef_pe = 1
elif 33 <= pe < 90:
coef_pe = round((33/pe) ** 0.5, 3)
else:
coef_pe = 0.6
return coef_pe
# Cria os DataFrames df_profundidade e df_profundidade_aval
df_profundidade = df_dados[['Área Terreno','Testada']].copy()
df_profundidade['coef_pe'] = df_profundidade.apply(coeficiente_profundidade, axis=1)
df_profundidade_aval = df_avaliando[['Área Terreno','Testada']].copy()
df_profundidade_aval['coef_pe'] = df_profundidade_aval.apply(coeficiente_profundidade, axis=1)
df_profundidade['fpe'] = round(df_profundidade_aval['coef_pe'][0]/df_profundidade['coef_pe'],2)
df_profundidade = df_profundidade[['fpe']]
#-----------------#
# fator topografia (ftp)
# dicionário topografia
dict_topo = {
'plano <5%': 1,
'aclive_leve 5% e 30%': 0.95,
'declive_leve 5% e 30%': 0.90,
'aclive_acentuado >30%': 0.85,
'declive_acentuado >30%': 0.80,
'não se aplica' : 1,
}
# Cria os DataFrames df_topografia e df_topografia_aval
df_topografia = df_dados.copy()
df_topografia = df_topografia[['Topografia']]
df_topografia_aval = df_avaliando.copy()
df_topografia_aval = df_topografia_aval[['Topografia']]
# Função para mapear os valores de Topografia para cod_topo usando o dicionário
def mapear_cod_topo(topografia):
return dict_topo.get(topografia, 0) # 0 como valor padrão caso a topografia não esteja no dicionário
# Aplicando a função para criar a coluna cod_topo em df_dados e df_avaliando
df_topografia['coef_tp'] = df_topografia['Topografia'].apply(mapear_cod_topo)
df_topografia_aval['coef_tp'] = df_topografia_aval['Topografia'].apply(mapear_cod_topo)
df_topografia['ftp'] = round(df_topografia_aval['coef_tp'][0]/df_topografia['coef_tp'],2)
df_topografia = df_topografia[['ftp']]
#-----------------#
# fator relevo (frv)
# dicionário relevo
dict_rel = {
'plana' : 1.1,
'ondulada': 1.00,
'montanhosa/acidentada': 0.80,
'não se aplica' : 1.00,
}
# Cria os DataFrames df_relevo e df_relevo_aval
df_relevo = df_dados.copy()
df_relevo = df_relevo[['Relevo']]
df_relevo_aval = df_avaliando.copy()
df_relevo_aval = df_relevo_aval[['Relevo']]
# Função para mapear os valores de Relevo para cod_rel usando o dicionário
def mapear_cod_rel(relevo):
return dict_rel.get(relevo, 0) # 0 como valor padrão caso o relevo não esteja no dicionário
# Aplicando a função para criar a coluna cod_rel em df_dados e df_avaliando
df_relevo['coef_rv'] = df_relevo['Relevo'].apply(mapear_cod_rel)
df_relevo_aval['coef_rv'] = df_relevo_aval['Relevo'].apply(mapear_cod_rel)
df_relevo['frv'] = round(df_relevo_aval['coef_rv'][0]/df_relevo['coef_rv'],2)
df_relevo = df_relevo[['frv']]
#-----------------#
# fator superfície (fsp)
# dicionário superfície
dict_sup = {
'Seca': 1.00,
'Região inundável mas não atingida': 0.90,
'Região inundável mas atingida periodicamente': 0.70,
'Alagada': 0.60,
'não se aplica' : 1.00,
}
# Cria os DataFrames df_superficie e df_superficie_aval
df_superficie = df_dados.copy()
df_superficie = df_superficie[['Superfície']]
df_superficie_aval = df_avaliando.copy()
df_superficie_aval = df_superficie_aval[['Superfície']]
# Função para mapear os valores de Superfície para cod_sup usando o dicionário
def mapear_cod_sup(superficie):
return dict_sup.get(superficie, 0) # 0 como valor padrão caso a superficie não esteja no dicionário
# Aplicando a função para criar a coluna cod_sup em df_dados e df_avaliando
df_superficie['coef_sp'] = df_superficie['Superfície'].apply(mapear_cod_sup)
df_superficie_aval['coef_sp'] = df_superficie_aval['Superfície'].apply(mapear_cod_sup)
df_superficie['fsp'] = round(df_superficie_aval['coef_sp'][0]/df_superficie['coef_sp'],2)
df_superficie = df_superficie[['fsp']]
#-----------------#
# fator aproveitamento (fap)
# dicionário aproveitamento
dict_apr = {
'Loteamento': 1.00,
'Indústria': 0.90,
'Culturas': 0.80,
'não se aplica' : 1.00,
}
# Cria os DataFrames df_aproveitamento e df_aproveitamento_aval
df_aproveitamento = df_dados.copy()
df_aproveitamento = df_aproveitamento[['Aproveitamento']]
df_aproveitamento_aval = df_avaliando.copy()
df_aproveitamento_aval = df_aproveitamento_aval[['Aproveitamento']]
# Função para mapear os valores de Aproveitamento para cod_apr usando o dicionário
def mapear_cod_apr(aproveitamento):
return dict_apr.get(aproveitamento, 0) # 0 como valor padrão caso o aproveitamento não esteja no dicionário
# Aplicando a função para criar a coluna cod_apr em df_dados e df_avaliando
df_aproveitamento['coef_ap'] = df_aproveitamento['Aproveitamento'].apply(mapear_cod_apr)
df_aproveitamento_aval['coef_ap'] = df_aproveitamento_aval['Aproveitamento'].apply(mapear_cod_apr)
df_aproveitamento['fap'] = round(df_aproveitamento_aval['coef_ap'][0]/df_aproveitamento['coef_ap'],2)
df_aproveitamento = df_aproveitamento[['fap']]
#-----------------#
# fator acessibilidade viária (fav)
# dicionário acessibilidade
dict_ace = {
'Ótima': 1.00,
'Muito boa': 0.95,
'Boa': 0.90,
'Desfavorável': 0.80,
'Má': 0.75,
'Péssima': 0.70,
'não se aplica' : 1.00,
}
# Cria os DataFrames df_acesso e df_acesso_aval
df_acesso = df_dados.copy()
df_acesso = df_acesso[['Acessibilidade']]
df_acesso_aval = df_avaliando.copy()
df_acesso_aval = df_acesso_aval[['Acessibilidade']]
# Função para mapear os valores de Acessibilidade para cod_ace usando o dicionário
def mapear_cod_ace(acesso):
return dict_ace.get(acesso, 0) # 0 como valor padrão caso a acessibilidade não esteja no dicionário
# Aplicando a função para criar a coluna cod_ace em df_dados e df_avaliando
df_acesso['coef_av'] = df_acesso['Acessibilidade'].apply(mapear_cod_ace)
df_acesso_aval['coef_av'] = df_acesso_aval['Acessibilidade'].apply(mapear_cod_ace)
df_acesso['fav'] = round(df_acesso_aval['coef_av'][0]/df_acesso['coef_av'],2)
df_acesso = df_acesso[['fav']]
#-----------------#
# fator idade aparente e conservação (fic)
# dicionário padrão construtivo
dict_ic = {
'id<5_novo': 1.00,
'id<5_bom': 0.95,
'id<5_reparos simples': 0.80,
'id<5_reparos importantes': 0.45,
'id entre 6 e 10_novo': 0.95,
'id entre 6 e 10_bom': 0.90,
'id entre 6 e 10_reparos simples': 0.75,
'id entre 6 e 10_reparos importantes': 0.40,
'id entre 11 e 30_novo': 0.85,
'id entre 11 e 30_bom': 0.80,
'id entre 11 e 30_reparos simples': 0.65,
'id entre 11 e 30_reparos importantes': 0.35,
'id entre 31 e 50_novo': 0.55,
'id entre 31 e 50_bom': 0.50,
'id entre 31 e 50_reparos simples': 0.45,
'id entre 31 e 50_reparos importantes': 0.25,
'id>50_novo': 0.30,
'id>50_bom': 0.20,
'id>50_reparos simples': 0.15,
'id>50_reparos importantes': 0.10,
'não se aplica' : 1,
}
# Cria os DataFrames df_idade_cons e df_idade_cons_aval
df_idade_cons = df_dados.copy()
df_idade_cons = df_idade_cons[['Idade aparente e conservação']]
df_idade_cons_aval = df_avaliando.copy()
df_idade_cons_aval = df_idade_cons_aval[['Idade aparente e conservação']]
# Função para mapear os valores de idade aparente e conservação para cod_id_cons usando o dicionário
def mapear_cod_id_cons(id_cons):
return dict_ic.get(id_cons, 0) # 0 como valor padrão caso a Idade e Conservação não esteja no dicionário
# Aplicando a função para criar a coluna cod_ic em df_dados e df_avaliando
df_idade_cons['coef_ic'] = df_idade_cons['Idade aparente e conservação'].apply(mapear_cod_id_cons)
df_idade_cons_aval['coef_ic'] = df_idade_cons_aval['Idade aparente e conservação'].apply(mapear_cod_id_cons)
df_idade_cons['fic'] = round(df_idade_cons_aval['coef_ic'][0] / df_idade_cons['coef_ic'],2)
df_idade_cons = df_idade_cons[['fic']]
#-----------------#
# fator padrão construtivo (fpd)
# dicionário padrão construtivo
dict_pad = {
'baixo_residencial': 1.00,
'médio/baixo_residencial': 1.15,
'médio_residencial': 1.30,
'médio/alto_residencial': 1.45,
'alto_residencial': 1.65,
'baixo_comercial': 1.00,
'médio/baixo_comercial': 1.08,
'médio_comercial': 1.15,
'médio/alto_comercial': 1.25,
'alto_comercial': 1.40,
'não se aplica' : 1,
}
# Cria os DataFrames df_padrao e df_padrao_aval
df_padrao = df_dados.copy()
df_padrao = df_padrao[['Padrão construtivo']]
df_padrao_aval = df_avaliando.copy()
df_padrao_aval = df_padrao_aval[['Padrão construtivo']]
# Função para mapear os valores de padrão construtivo para cod_pad usando o dicionário
def mapear_cod_pad(padrao):
return dict_pad.get(padrao, 0) # 0 como valor padrão caso o padrão não esteja no dicionário
# Aplicando a função para criar a coluna cod_pad em df_dados e df_avaliando
df_padrao['coef_pd'] = df_padrao['Padrão construtivo'].apply(mapear_cod_pad)
df_padrao_aval['coef_pd'] = df_padrao_aval['Padrão construtivo'].apply(mapear_cod_pad)
df_padrao['fpd'] = round(df_padrao_aval['coef_pd'][0]/df_padrao['coef_pd'],2)
df_padrao = df_padrao[['fpd']]
#-----------------#
# fator vagas de estacionamento (fvg)
df_vaga = df_dados[['Vagas']].copy()
df_vaga_aval = df_avaliando[['Vagas']].copy()
# Calcular a diferença entre as colunas 'Vagas' nos dois DataFrames
df_vaga['dif'] = df_vaga['Vagas'] - df_vaga_aval['Vagas'][0]
# Definir a função para o cálculo da coluna 'fvg'
def calculate_fcg(dif, vagas):
if dif == 0:
return 1
else:
return 1 - 0.067 * dif
# Aplicar a função para calcular a coluna 'fvg'
df_vaga['fvg'] = round(df_vaga.apply(lambda row: calculate_fcg(row['dif'], row['Vagas']), axis=1), 2)
df_vaga = df_vaga[['fvg']]
#-----------------#
# fator extra (à critério do avaliador) (fex)
df_exc = df_dados.copy()
df_exc = df_exc[['Coeficiente extra']]
# Verificação se o valor é zero
if df_avaliando['Coeficiente extra'][0] == 0:
df_exc['fex'] = 1
else:
df_exc['fex'] = round(df_avaliando['Coeficiente extra'][0] / df_exc['Coeficiente extra'], 2)
df_exc = df_exc[['fex']]
#-----------------#
# concatemando o dataframe principal com as dataframes dos fatores
result = pd.concat([df_dados, df_transp, df_area_const, df_area_terreno, df_profundidade, df_topografia, df_relevo,
df_superficie,df_aproveitamento, df_acesso, df_idade_cons, df_padrao, df_vaga, df_exc], axis=1)
result['Valor_desc'] = round(result['Valor']*(result['fof']), 2)
if finalidade == "Tipologias com área construída":
result['Vunit'] = round((result['Valor_desc']/result['Área Construída']), 2)
else:
result['Vunit'] = round((result['Valor_desc']/result['Área Terreno']), 2)
result['ordem'] = range(1, len(result)+1)
result = result[['ordem', 'lat','lon','Endereço','Atratividade local', 'Área Construída', 'Área Terreno', 'Testada', 'Topografia',
'Relevo','Superfície','Aproveitamento','Acessibilidade', 'Idade aparente e conservação', 'Padrão construtivo', 'Vagas',
'Coeficiente extra', 'Valor', 'fof','Valor_desc', 'Vunit','fal', 'fac', 'fat','fpe', 'ftp','frv','fsp',
'fap','fav', 'fic','fpd', 'fvg', 'fex']]
#if finalidade == "Tipologias com área construída":
#result = result[['lat','lon','Atratividade local', 'Área Construída', 'Área Terreno',
#'Idade aparente e conservação', 'Padrão construtivo', 'Vagas','Coeficiente extra', 'Valor',
#'fof','Valor_desc', 'Vunit','fal', 'fac', 'fat', 'fic','fpd', 'fvg', 'fex']]
#else:
#result = result[['lat','lon','Atratividade local', 'Área Terreno', 'Testada', 'Topografia', 'Superfície',
#'Coeficiente extra', 'Valor', 'fof','Valor_desc','Vunit','fal', 'fat','fpe', 'ftp','fsp', 'fex']]
result['Vunit_hom'] = round(result['Vunit'] * result['fal'] * \
result['fac'] * \
result['fat'] * \
result['fpe'] * \
result['ftp'] * \
result['frv'] * \
result['fsp'] * \
result['fap'] * \
result['fav'] * \
result['fic'] * \
result['fpd'] * \
result['fvg'] * \
result['fex'], 2)
#if finalidade == "Tipologias com área construída":
#result['Vunit_hom'] = round(result['Vunit'] * result['fal'] * \
#result['fac'] * \
#result['fat'] * \
#result['fic'] * \
#result['fpd'] * \
#result['fvg'] * \
#result['fex'], 2)
#else:
#result['Vunit_hom'] = round(result['Vunit'] * result['fal'] * \
#result['fat'] * \
#result['fpe'] * \
#result['ftp'] * \
#result['fsp'] * \
#result['fex'], 2)
#-----------------#
# RESULTADOS ESTATÍSTICOS INICIAIS
num = len(result)
media = round(result['Vunit_hom'].mean(), 2)
valor_hom_máximo = round(result['Vunit_hom'].max(), 2)
valor_hom_mínimo = round(result['Vunit_hom'].min(), 2)
limite_superior = round(media * 1.3 ,2)
limite_inferior = round(media * 0.7 ,2)
desvio_padrao = round(result['Vunit_hom'].std(), 2)
coef_variacao = round((desvio_padrao / media)*100, 2)
# CRITÉRIO DE CHAUVENET
dict_vc = {
2: 1.15,3: 1.38,4: 1.54,5: 1.65,6: 1.73,7: 1.80,8: 1.85,9: 1.91,10: 1.96,11: 1.99,
12: 2.03,13: 2.06,14: 2.10,15: 2.13,16: 2.16,17: 2.18,18: 2.20,19: 2.21,20: 2.24,
21: 2.26,22: 2.28,23: 2.30,24: 2.31,25: 2.33,26: 2.35,27: 2.36,28: 2.37,29: 2.38,
30: 2.93
}
vc = dict_vc[num]
vc
result['z-score'] = round(abs((result['Vunit_hom'] - media) / desvio_padrao), 2)
result['Status'] = np.where(result['z-score'] > vc, 'rejeitado', 'aceito')
# cópia para dataframe na interface
df_interface = result.copy()
# DADOS REMOVIDOS
outliers = result[result['Status'] == 'rejeitado']
# REMOÇÃO DE OUTLIERS PELO CRITÉRIO DE CHAUVENET
result = result[result['Status'] != 'rejeitado']
# para plotar o gráfico na interface
df_grafico = result.copy()
# GRAU DE FUNDAMENTAÇÃO
# item_1 - Graus de Fundamentação (Caracterização do imóvel avaliando)
if caract_avaliando == "Completa quanto a todos os fatores analisados":
item_1 = 3
elif caract_avaliando == "Completa quanto aos fatores utilizados no tratamento":
item_1 = 2
else:
item_1 = 1
# item_2 - Graus de Fundamentação (Quantidade mínima de dados)
if num >= 12:
item_2 = 3
elif 5 <= num <12:
item_2 = 2
elif 3 <= num <5:
item_2 = 1
else:
item_2 = 0
# item_3 - Graus de Fundamentação (Identificação dos dados)
if ident_dados == "Apresentação de informações relativas a todas as características dos dados analisados, com foto e características observadas pelo autor do laudo":
item_3 = 3
elif ident_dados == "Apresentação de informações relativas a todas as características dos dados analisados":
item_3 = 2
else:
item_3 = 1
# item_4 - Graus de Fundamentação ( Intervalo admissível de ajuste para o conjunto de fatores)
max = result.iloc[:, 21:34].max().max()
min = result.iloc[:, 21:34].min().min()
if num >= 5:
if min >= 0.8 and max <= 1.2:
item_4 = 3
elif min >= 0.5 and max <= 2.0:
item_4 = 2
else:
item_4 = 1 # Condição ausente aqui
else:
if min >= 0.8 and max <= 1.2:
item_4 = 1
else:
item_4 = 0
# enquadramento
soma = item_1 + item_2 + item_3 + item_4
if soma > 10 and item_2 == 3 and item_4 == 3 and item_1 >= 2 and item_3 >= 2:
fundamentacao = "III"
elif soma > 6 and item_2 >= 2 and item_4 >= 2 and item_1 >= 1 and item_3 >= 1:
fundamentacao = "II"
elif soma > 4 and item_2 >= 1 and item_4 >= 1 and item_1 >= 1 and item_3 >= 1:
fundamentacao = "I"
else:
fundamentacao = "Fora dos critérios"
# RESULTADOS ESTATÍSTICOS FINAIS
num_dados = len(df_dados)
num = len(result)
dados_outliers = len(outliers)
media = round(result['Vunit_hom'].mean(), 2)
valor_hom_máximo = round(result['Vunit_hom'].max(), 2)
valor_hom_mínimo = round(result['Vunit_hom'].min(), 2)
limite_superior = round(media * 1.3 ,2)
limite_inferior = round(media * 0.7 ,2)
desvio_padrao = round(result['Vunit_hom'].std(), 2)
coef_variacao = round((desvio_padrao / media)*100, 2)
# Crie uma string formatada com os RESULTADOS ESTATÍSTICOS FINAIS
resultados_formatados = f"""
Número de dados iniciais: {num_dados} dados
Número de dados utilizados: {num} dados
Valor Crítico (Chauvenet): {vc}
Outliers: {dados_outliers} dado(s)
Média saneada: {media} R$/m²
Valor máximo: {valor_hom_máximo} R$/m²
Valor mínimo: {valor_hom_mínimo} R$/m²
Lim superior (Média*1,3): {limite_superior} R$/m²
Lim inferior (Média*0,7): {limite_inferior} R$/m²
Desvio padrão: {desvio_padrao} R$/m²
Coeficiente variação: {coef_variacao} %
"""
# INTEREVALO DE CONFIANÇA DE 80%
# importando a tabela de t de student
df_t = pd.read_excel('TABELAS.xlsx','t')
# número de dados
n = result.shape[0]-1
# "t" de student
gl = df_t[df_t['gl (n-1)'] == n]
tc = gl.iloc[0, 3]
# limites infeiror e superior do IC de 80% e amplitude
li_IC = round(media - tc * ((desvio_padrao/(num-1)**0.5)), 2)
ls_IC = round(media + tc * ((desvio_padrao/(num-1)**0.5)), 2)
A = round(ls_IC - li_IC, 2)
A_perc = round((A / media)*100, 2)
def calcular_grau(a):
if a <= 30:
return "Grau III"
elif a <= 40:
return "Grau II"
elif a <= 50:
return "Grau I"
else:
return "Fora dos critérios"
precisao = calcular_grau(A_perc)
# Crie uma string formatada com o INTEREVALO DE CONFIANÇA DE 80%
intervalo_confiança = f"""
t student: {tc}
Média saneada: {media} R$/m²
limite infeiror IC_80%: {li_IC} R$/m²
limite superior IC_80%: {ls_IC} R$/m²
Aplitude: {A} R$/m²
Aplitude percentual: {A_perc} %
Grau de Fundamentação {fundamentacao}
Grau de Precisão: {precisao}
"""
# VALOR CALCULADO A PARTIR DOS VALORES HOMOGENEIZADOS UTILIZANDO O CRITÉRIO DE CLASSAS D0 ABUNAHMAN
# dividindo a amplitude em 3 classes
C = round((A / 3), 2)
# calculando os intervalos das 3 classes
C1 = round(result[(result['Vunit_hom'] >= li_IC) & (result['Vunit_hom'] <= li_IC + C)]['Vunit_hom'].count(), 2)
C2 = round(result[(result['Vunit_hom'] >= li_IC + C) & (result['Vunit_hom'] <= ls_IC - C)]['Vunit_hom'].count(), 2)
C3 = round(result[(result['Vunit_hom'] >= ls_IC - C) & (result['Vunit_hom'] <= ls_IC)]['Vunit_hom'].count(), 2)
# crinado listas com os valores encontrados nos intervalos
list_C1 = result[(result['Vunit_hom'] >= li_IC) & (result['Vunit_hom'] <= li_IC + C)]['Vunit_hom'].tolist()
list_C2 = result[(result['Vunit_hom'] >= li_IC + C) & (result['Vunit_hom'] <= ls_IC - C)]['Vunit_hom'].tolist()
list_C3 = result[(result['Vunit_hom'] >= ls_IC - C) & (result['Vunit_hom'] <= ls_IC)]['Vunit_hom'].tolist()
pC1 = round(sum(C1 * elemento for elemento in list_C1), 2)
pC2 = round(sum(C2 * elemento for elemento in list_C2), 2)
pC3 = round(sum(C3 * elemento for elemento in list_C3), 2)
divisor = ((C1 * C1) if C1 != 0 else 0) +((C2 * C2) if C2 != 0 else 0) + ((C3 * C3) if C3 != 0 else 0)
media_pond = round((pC1 + pC2 + pC3) / divisor, 2)
# VALORES CALCULADOS
if finalidade == "Tipologias com área construída":
Valor_imóvel = round(media * df_avaliando['Área Construída'], 2).item()
else:
Valor_imóvel = round(media * df_avaliando['Área Terreno'], 2).item()
LI = round(Valor_imóvel* 0.85, 2)
LS = round(Valor_imóvel* 1.15, 2)
if finalidade == "Tipologias com área construída":
Valor_imóvel_2 = round((media_pond) * df_avaliando['Área Construída'], 2).item()
else:
Valor_imóvel_2 = round((media_pond) * df_avaliando['Área Terreno'], 2).item()
LI_classes = round(Valor_imóvel_2* 0.85, 2)
LS_classes = round(Valor_imóvel_2* 1.15, 2)
# Crie uma string formatada com os VALORES CALCULADOS
if finalidade == "Tipologias com área construída":
area = df_avaliando['Área Construída'].item()
else:
area = df_avaliando['Área Terreno'].item()
valores_finais = f"""
Área avaliando: {area}
---------
Valor (média simples): R$ {Valor_imóvel}
LI: R$ {LI}
LS: R$ {LS}
Vu (média simples): R$/m² {media}
---------
Valor (critério classes): R$ {Valor_imóvel_2}
LI: R$ {LI_classes}
LS: R$ {LS_classes}
Vu (critério classes): R$/m² {media_pond}
"""
#-----------------#
# OUTPUTS
# Crie um objeto ExcelWriter para escrever no arquivo Excel
nome_com_extensao = os.path.basename(planilha.name)
nome_do_arquivo = os.path.splitext(nome_com_extensao)[0]
# Defina o nome da planilha de saída com base no nome da planilha de entrada
output_file = f"{nome_do_arquivo}_relatório.xlsx"
#output_file = 'relatório.xlsx' (substituído pelo código acima)
with pd.ExcelWriter(output_file, engine='xlsxwriter') as writer:
# Salve o DataFrame 'avaliando' na planilha 'relatório'
df_avaliando.to_excel(writer, sheet_name='avaliando', index=False)
#-----------------#
# Salve o DataFrame 'result' na planilha 'relatório'
df_dados.to_excel(writer, sheet_name='dados', index=False)
#-----------------#
# Salve o DataFrame 'dado_hom' na planilha 'relatório'
result.to_excel(writer, sheet_name='dados_hom', index=False)
#-----------------#
# Salve o DataFrame 'outliers' na planilha 'relatório'
outliers.to_excel(writer, sheet_name='outliers', index=False)
#-----------------#
# Crie um novo DataFrame com os resultados estatísticos
result_estatisticos = pd.DataFrame({
'Número de dados iniciais': [num],
'Número de dados utilizados': [num_dados],
'Valor Crítico (Chauvenet)': [vc],
'Outliers': [dados_outliers],
'Média': [media],
'Valor homogeneizado máximo': [valor_hom_máximo],
'Valor homogeneizado mínimo': [valor_hom_mínimo],
'Limite superior (Média x 1,3)': [limite_superior],
'Limite inferior (Média x 0,7)': [limite_inferior],
'Desvio padrão': [desvio_padrao],
'Coeficiente_variacao (%)': [coef_variacao]
})
# Transponha o DataFrame
result_estatisticos = result_estatisticos.T.reset_index()
# Defina os nomes das colunas do novo DataFrame
result_estatisticos.columns = ['Nome da Coluna', 'Valor']
result_estatisticos.to_excel(writer, sheet_name='resultados', index=False)
#-----------------#
# Crie um novo DataFrame com os resultados do IC
result_ic = pd.DataFrame({
'Número de dados': [n],
't student': [tc],
'Limite superior do IC de 80%': [ls_IC],
'Limite inferior do IC de 80%': [li_IC],
'Amplitude': [A],
'Amplitude%':[A_perc],
'Grau de Fundamentação': [fundamentacao],
'Grau de Precisão': [precisao]
})
# Transponha o DataFrame
result_ic = result_ic.T.reset_index()
# Defina os nomes das colunas do novo DataFrame
result_ic.columns = ['Nome da Coluna', 'Valor']
result_ic.to_excel(writer, sheet_name='IC', index=False)
#-----------------#
# Crie um novo DataFrame com os resultados do cálculo das classes de Abunahman
result_classes = pd.DataFrame({
'C = Amplitude / 3': [round(C, 2)],
'li_IC = limite inferior do IC': [round(li_IC, 2)],
'li_IC + C = limite inferior do IC + C': [round(li_IC + C, 2)],
'ls_IC - C = limite superior do IC + C': [round(ls_IC - C, 2)],
'ls_IC = limite superior do IC': [round(ls_IC, 2)],
'C1 = quantidade de dados na classe 1': [C1],
'C2 = quantidade de dados na classe 2': [C2],
'C3 = quantidade de dados na classe 3': [C3],
'list_C1 = listagem de dados na classe 1': [list_C1],
'list_C2 = listagem de dados na classe 2': [list_C2],
'list_C3 = listagem de dados na classe 3': [list_C3],
'Soma da multiplicação dos valor pelos pesos - classe 1': [pC1],
'Soma da multiplicação dos valor pelos pesos - classe 2': [pC2],
'Soma da multiplicação dos valor pelos pesos - classe 3': [pC3],
'Divisor da somas das classes': [divisor],
'Média ponderada': [media_pond]
})
# Transponha o DataFrame
result_classes = result_classes.T.reset_index()
# Defina os nomes das colunas do novo DataFrame
result_classes.columns = ['Nome da Coluna', 'Valor']
result_classes.to_excel(writer, sheet_name='classes', index=False)
#-----------------#
# Crie um novo DataFrame com os resultados do valor do imóvel
result_valores = pd.DataFrame({
'Valor (média simples): R$': [Valor_imóvel],
'LI: R$': [LI],
'LS: R$': [LS],
'Vu (média simples): R$/m²': [media],
'Valor (critério classes) R$:': [Valor_imóvel_2],
'Vu (critério classes): R$/m²': [media_pond],
'LI_classes: R$': [LI_classes],
'LS_classes: R$': [LS_classes]
})
# Transponha o DataFrame
result_valores = result_valores.T.reset_index()
# Defina os nomes das colunas do novo DataFrame
result_valores.columns = ['Nome da Coluna', 'Valor']
result_valores.to_excel(writer, sheet_name='valor', index=False)
#-----------------#
mapa = plotar_mapa_com_dois_dataframes(result, df_avaliando)
#mapa = criar_mapa(df_avaliando) #novo
#-----------------#
# para gerar um gráfico de dispersão na interface
#scatter_plot_with_percent_labels(df_grafico)
grafico_barras(df_grafico)
#-----------------#
# Salve o DataFrame 'result' em uma planilha
result.to_excel(output_file, index=False)
#-----------------#
save_results_to_pdf(resultados_formatados, intervalo_confiança, valores_finais, 'scatter_plot.png')
result.to_excel(output_file, index=False)
#-----------------#
# Retorna tanto a planilha quanto os resultados formatados
return output_file, 'resultados.pdf', df_interface, resultados_formatados, intervalo_confiança, valores_finais, mapa, 'scatter_plot.png'
# Interface do Gradio com input como arquivo XLS ou XLSX
interface = gr.Interface(
fn=avaliacao_imovel,
inputs=[
gr.components.File(label="Upload planilha", type="file", info="Importação de planilha padrão com o avaliando e os dados"),
#gr.components.Number(label="Número de linhas desejadas", default=10),
gr.Slider(3, 26, value=26, label="Número de dados", info="Escolha o número de dados", step=1),
#gr.components.Dropdown(label="Tipo de imóvel", choices=["Terrenos e glebas","Tipologias com área construída"], default="Tipologias com área construída"),
gr.Radio(["Terrenos e glebas", "Tipologias com área construída"], label="Tipo de Imóvel", info="Escolha o tipo de imóvel"),
gr.Radio(["Completa p/ todos fatores analisados", "Completa p/ os fatores utilizados", "Situação paradigma"],
label="Caracterização do avaliando", info="Para enquadramento quanto a fundamentação - ítem 1 da tabela 6 do anexo 2 - NBR 14.653-2"),
gr.Radio(["Apresentação de informações relativas a todas as características dos dados analisados, com foto e características observadas pelo autor do laudo",
"Apresentação de informações relativas a todas as características dos dados analisados",
"Apresentação de informações relativas a todas as características dos dados correspondentes aos fatores analisados"],
label="Identificação dos dados",info="Para enquadramento quanto a fundamentação - ítem 3 da tabela 6 do anexo 2 - NBR 14.653-2",
)
],
outputs=[
gr.components.File(label="Download planilha"),
gr.components.File(label="Download Relatório em PDF"),
gr.Dataframe(label="Dados homogeneizados"),
gr.components.Textbox(label="Resultados estatísticos"),
gr.components.Textbox(label="Intervalo de confiança de 80%"),
gr.components.Textbox(label="Valores Calculados"),
gr.Plot(label="Geolocalização da amostra"),
gr.Image(label="Gráfico"),
],
live=False,
capture_session=True,
theme=gr.themes.Monochrome(),
title = "<span style='color: gray; font-size: 52px;'>aval</span><span style='color: black; font-size: 52px;'>ia</span><span style='color: gray; font-size: 56px;'>.FACTOR</span>",
description=f"""
<p style="text-align: left;"><b><span style='color: gray; font-size: 40px;'>aval</span><span style='color: black; font-size: 40px;'>ia</span><span style='color: gray; font-size: 40px;'>.se</b></p>
<p style="text-align: left;"></span>Aplicativo MCDDM com tratamento por fatores / Faça o upload de uma planilha XLS ou XLSX com os dados / Para um exemplo de estrutura de planilha, você pode baixar <a href='https://huggingface.co/spaces/DavidSB/avaliaFACTOR/resolve/main/dados_entrada_factor.xlsx' download='dados_entrada_factor.xlsx'>aqui</a><br><br></p>
"""
)
# Executar o aplicativo Gradio
if __name__ == "__main__":
interface.launch(debug=True)