Spaces:
Runtime error
Runtime error
import matplotlib.pyplot as plt | |
import io | |
from PIL import Image | |
import pickle | |
import pandas as pd | |
import gradio as gr | |
import gradio as gr | |
import pandas as pd | |
import joblib | |
# Cargar el modelo de pron贸stico | |
model = joblib.load('modelo_rf.pkl') | |
# Definir las opciones para 'Borough' y 'Tipo_de_taxi' | |
borough_options = ['Bronx', 'Brooklyn', 'Manhattan', 'Staten Island'] | |
taxi_options = ['yellow', 'green'] | |
# Funci贸n para realizar las predicciones | |
def make_predictions(borough, taxi, years): | |
# Crear un DataFrame con las caracter铆sticas de entrada | |
df = pd.DataFrame({'borough': [borough], 'Tipo_de_taxi': [taxi]}) | |
# Generar los a帽os de pron贸stico | |
years_range = pd.date_range(start='today', periods=years, freq='Y').year | |
# Realizar las predicciones para cada a帽o de pron贸stico | |
predictions = [] | |
for year in years_range: | |
df['Date'] = pd.to_datetime(year, format='%Y') | |
prediction = model.predict(df) | |
predictions.append(prediction) | |
# Crear un DataFrame con los a帽os y las predicciones | |
result_df = pd.DataFrame({'Year': years_range, 'Prediction': predictions}) | |
return result_df | |
# Interfaz de Gradio | |
iface = gr.Interface( | |
fn=make_predictions, | |
inputs=[ | |
gr.inputs.Dropdown(choices=borough_options, label='Borough'), | |
gr.inputs.Dropdown(choices=taxi_options, label='Tipo_de_taxi'), | |
gr.inputs.Slider(minimum=1, maximum=10, default=5, label='Years') | |
], | |
outputs=gr.outputs.Dataframe(headers=['Year', 'Prediction']) | |
) | |
# Ejecutar la interfaz de Gradio | |
iface.launch() |