Update app.py
Browse files
app.py
CHANGED
@@ -24,6 +24,8 @@ import albumentations as A # Albumentations is a computer vision tool that boost
|
|
24 |
#import seaborn as sns
|
25 |
from albumentations.pytorch.transforms import ToTensorV2
|
26 |
|
|
|
|
|
27 |
model = models.resnet50(pretrained=False)
|
28 |
model.fc = nn.Linear(2048, 21)
|
29 |
model.load_state_dict(torch.load('resnet_best.pth', map_location=torch.device('cpu')), strict=True)
|
@@ -45,6 +47,7 @@ if uploaded_file is not None:
|
|
45 |
|
46 |
custom_pred = model.forward(tensor).detach().numpy()
|
47 |
custom_pred
|
|
|
48 |
|
49 |
elif ".csv" in uploaded_file.name:
|
50 |
dataframe = pd.read_csv(uploaded_file)
|
|
|
24 |
#import seaborn as sns
|
25 |
from albumentations.pytorch.transforms import ToTensorV2
|
26 |
|
27 |
+
id2class = {0: 'agricultural', 1: 'airplane', 2: 'baseballdiamond', 3: 'beach', 4: 'buildings', 5: 'chaparral', 6: 'denseresidential', 7: 'forest', 8: 'freeway', 9: 'golfcourse', 10: 'intersection', 11: 'mediumresidential', 12: 'mobilehomepark', 13: 'overpass', 14: 'parkinglot', 15: 'river', 16: 'runway', 17: 'sparseresidential', 18: 'storagetanks', 19: 'tenniscourt', 20: 'harbor'}
|
28 |
+
|
29 |
model = models.resnet50(pretrained=False)
|
30 |
model.fc = nn.Linear(2048, 21)
|
31 |
model.load_state_dict(torch.load('resnet_best.pth', map_location=torch.device('cpu')), strict=True)
|
|
|
47 |
|
48 |
custom_pred = model.forward(tensor).detach().numpy()
|
49 |
custom_pred
|
50 |
+
id2class[np.argmax(custom_pred)]
|
51 |
|
52 |
elif ".csv" in uploaded_file.name:
|
53 |
dataframe = pd.read_csv(uploaded_file)
|