Add City to DataBase
Browse files
physical_db/physical_database.csv
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
process_kpi/process_wcel_capacity.py
CHANGED
|
@@ -291,7 +291,7 @@ def wcel_kpi_analysis(
|
|
| 291 |
physical_db = physical_db.drop_duplicates(subset="code")
|
| 292 |
|
| 293 |
# keep only code and longitude and latitude
|
| 294 |
-
physical_db = physical_db[["code", "Longitude", "Latitude"]]
|
| 295 |
|
| 296 |
physical_db["code"] = (
|
| 297 |
pd.to_numeric(physical_db["code"], errors="coerce").fillna(0).astype(int)
|
|
|
|
| 291 |
physical_db = physical_db.drop_duplicates(subset="code")
|
| 292 |
|
| 293 |
# keep only code and longitude and latitude
|
| 294 |
+
physical_db = physical_db[["code", "Longitude", "Latitude", "City"]]
|
| 295 |
|
| 296 |
physical_db["code"] = (
|
| 297 |
pd.to_numeric(physical_db["code"], errors="coerce").fillna(0).astype(int)
|
queries/process_site_db.py
CHANGED
|
@@ -11,6 +11,7 @@ GSM_COLUMNS = [
|
|
| 11 |
"Longitude",
|
| 12 |
"Latitude",
|
| 13 |
"Hauteur",
|
|
|
|
| 14 |
]
|
| 15 |
|
| 16 |
WCDMA_COLUMNS = [
|
|
@@ -21,6 +22,7 @@ WCDMA_COLUMNS = [
|
|
| 21 |
"Longitude",
|
| 22 |
"Latitude",
|
| 23 |
"Hauteur",
|
|
|
|
| 24 |
]
|
| 25 |
LTE_COLUMNS = [
|
| 26 |
"code",
|
|
@@ -30,6 +32,7 @@ LTE_COLUMNS = [
|
|
| 30 |
"Longitude",
|
| 31 |
"Latitude",
|
| 32 |
"Hauteur",
|
|
|
|
| 33 |
]
|
| 34 |
|
| 35 |
CODE_COLUMNS = [
|
|
@@ -38,6 +41,7 @@ CODE_COLUMNS = [
|
|
| 38 |
"Longitude",
|
| 39 |
"Latitude",
|
| 40 |
"Hauteur",
|
|
|
|
| 41 |
]
|
| 42 |
|
| 43 |
|
|
@@ -150,6 +154,7 @@ def site_db():
|
|
| 150 |
"Longitude",
|
| 151 |
"Latitude",
|
| 152 |
"Hauteur",
|
|
|
|
| 153 |
]
|
| 154 |
]
|
| 155 |
|
|
|
|
| 11 |
"Longitude",
|
| 12 |
"Latitude",
|
| 13 |
"Hauteur",
|
| 14 |
+
"City",
|
| 15 |
]
|
| 16 |
|
| 17 |
WCDMA_COLUMNS = [
|
|
|
|
| 22 |
"Longitude",
|
| 23 |
"Latitude",
|
| 24 |
"Hauteur",
|
| 25 |
+
"City",
|
| 26 |
]
|
| 27 |
LTE_COLUMNS = [
|
| 28 |
"code",
|
|
|
|
| 32 |
"Longitude",
|
| 33 |
"Latitude",
|
| 34 |
"Hauteur",
|
| 35 |
+
"City",
|
| 36 |
]
|
| 37 |
|
| 38 |
CODE_COLUMNS = [
|
|
|
|
| 41 |
"Longitude",
|
| 42 |
"Latitude",
|
| 43 |
"Hauteur",
|
| 44 |
+
"City",
|
| 45 |
]
|
| 46 |
|
| 47 |
|
|
|
|
| 154 |
"Longitude",
|
| 155 |
"Latitude",
|
| 156 |
"Hauteur",
|
| 157 |
+
"City",
|
| 158 |
]
|
| 159 |
]
|
| 160 |
|
utils/convert_to_excel.py
CHANGED
|
@@ -139,6 +139,7 @@ def get_format_map_by_format_type(formats: dict, format_type: str) -> dict:
|
|
| 139 |
"Longitude": formats["green"],
|
| 140 |
"Latitude": formats["green"],
|
| 141 |
"Hauteur": formats["green"],
|
|
|
|
| 142 |
"number_trx_per_cell": formats["blue_light"],
|
| 143 |
"number_trx_per_bcf": formats["blue_light"],
|
| 144 |
"number_trx_per_site": formats["blue_light"],
|
|
|
|
| 139 |
"Longitude": formats["green"],
|
| 140 |
"Latitude": formats["green"],
|
| 141 |
"Hauteur": formats["green"],
|
| 142 |
+
"City": formats["green"],
|
| 143 |
"number_trx_per_cell": formats["blue_light"],
|
| 144 |
"number_trx_per_bcf": formats["blue_light"],
|
| 145 |
"number_trx_per_site": formats["blue_light"],
|
utils/utils_vars.py
CHANGED
|
@@ -15,7 +15,9 @@ def get_physical_db():
|
|
| 15 |
pd.DataFrame: A DataFrame containing the filtered columns.
|
| 16 |
"""
|
| 17 |
physical = pd.read_csv(url)
|
| 18 |
-
physical = physical[
|
|
|
|
|
|
|
| 19 |
return physical
|
| 20 |
|
| 21 |
|
|
|
|
| 15 |
pd.DataFrame: A DataFrame containing the filtered columns.
|
| 16 |
"""
|
| 17 |
physical = pd.read_csv(url)
|
| 18 |
+
physical = physical[
|
| 19 |
+
["Code_Sector", "Azimut", "Longitude", "Latitude", "Hauteur", "City"]
|
| 20 |
+
]
|
| 21 |
return physical
|
| 22 |
|
| 23 |
|