|
|
import pandas as pd |
|
|
from geopy.distance import geodesic |
|
|
|
|
|
from queries.process_gsm import process_gsm_data |
|
|
from queries.process_lte import process_lte_data |
|
|
from queries.process_wcdma import process_wcdma_data |
|
|
from utils.config_band import adjl_band |
|
|
from utils.convert_to_excel import convert_dfs, save_dataframe |
|
|
from utils.utils_vars import UtilsVars |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ADJL_GSM_COLUMNS = ["BSC", "BCF", "BTS", "ADJL", "earfcn", "lteAdjCellTac"] |
|
|
|
|
|
ADJL_WCDMA_COLUMNS = ["RNC", "WBTS", "WCEL", "ADJL", "AdjLEARFCN"] |
|
|
|
|
|
BTS_COLUMNS = ["ID_BTS", "name", "Code_Sector"] |
|
|
|
|
|
WCEL_COLUMNS = ["ID_WCEL", "name", "Code_Sector"] |
|
|
|
|
|
LTE_COLUMNS_CONFIG = ["Code_Sector", "site_config_band"] |
|
|
|
|
|
LTE_COLUMNS_TAC = ["Code_Sector", "tac", "band"] |
|
|
|
|
|
LTE_COLUMNS_ADJL = ["Code_Sector", "site_config_band", "tac", "band"] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def check_bands(row: pd.Series) -> bool: |
|
|
""" |
|
|
Verify whether all configured site bands exist in ADJL created bands. |
|
|
""" |
|
|
site_bands = ( |
|
|
set(str(row["site_config_band"]).split("/")) |
|
|
if pd.notna(row["site_config_band"]) |
|
|
else set() |
|
|
) |
|
|
adjl_bands = ( |
|
|
set(str(row["adjl_created_band"]).split("/")) |
|
|
if pd.notna(row["adjl_created_band"]) |
|
|
else set() |
|
|
) |
|
|
return site_bands.issubset(adjl_bands) |
|
|
|
|
|
|
|
|
def missing_bands(row: pd.Series) -> str | None: |
|
|
""" |
|
|
Return missing bands from ADJL compared to site configuration. |
|
|
""" |
|
|
site_bands = ( |
|
|
set(str(row["site_config_band"]).split("/")) |
|
|
if pd.notna(row["site_config_band"]) |
|
|
else set() |
|
|
) |
|
|
adjl_bands = ( |
|
|
set(str(row["adjl_created_band"]).split("/")) |
|
|
if pd.notna(row["adjl_created_band"]) |
|
|
else set() |
|
|
) |
|
|
diff = site_bands - adjl_bands |
|
|
return ",".join(diff) if diff else None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def process_adjl_data(file_path: str) -> list[pd.DataFrame]: |
|
|
""" |
|
|
Process ADJL data from an Excel file and return structured DataFrames. |
|
|
|
|
|
Args: |
|
|
file_path (str): Path to the input Excel file. |
|
|
|
|
|
Returns: |
|
|
list[pd.DataFrame]: [GSM_ADJL, WCDMA_ADJL, BTS, WCEL, LTE] |
|
|
""" |
|
|
|
|
|
dfs = pd.read_excel( |
|
|
file_path, |
|
|
sheet_name=["ADJL", "BTS", "WCEL"], |
|
|
engine="calamine", |
|
|
skiprows=[0], |
|
|
) |
|
|
|
|
|
|
|
|
df_bts = process_gsm_data(file_path)[BTS_COLUMNS] |
|
|
|
|
|
|
|
|
df_wcel = process_wcdma_data(file_path)[WCEL_COLUMNS] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lte_fdd_df, lte_tdd_df = process_lte_data(file_path) |
|
|
lte_tdd_df = lte_tdd_df.rename(columns={"earfcn": "earfcnDL"}) |
|
|
lte_df = pd.concat([lte_fdd_df, lte_tdd_df], ignore_index=True)[LTE_COLUMNS_ADJL] |
|
|
|
|
|
|
|
|
lte_df_config = lte_df[LTE_COLUMNS_CONFIG] |
|
|
lte_df_global_tac = ( |
|
|
lte_df[["Code_Sector", "tac"]] |
|
|
.drop_duplicates(subset=["Code_Sector"], keep="first") |
|
|
.rename(columns={"tac": "global_tac"}) |
|
|
) |
|
|
|
|
|
lte_df_band_tac = lte_df[LTE_COLUMNS_TAC].copy() |
|
|
lte_df_band_tac["Code_Sector_band"] = ( |
|
|
lte_df_band_tac[["Code_Sector", "band"]].astype(str).agg("_".join, axis=1) |
|
|
) |
|
|
lte_df_band_tac = lte_df_band_tac.drop(columns=["Code_Sector"]) |
|
|
|
|
|
|
|
|
df_adjl = dfs["ADJL"] |
|
|
df_adjl.columns = df_adjl.columns.str.replace(r"[ ]", "", regex=True) |
|
|
|
|
|
gsm_adjl_df = df_adjl[ADJL_GSM_COLUMNS] |
|
|
wcdma_adjl_df = df_adjl[ADJL_WCDMA_COLUMNS] |
|
|
|
|
|
|
|
|
|
|
|
gsm_adjl_df = gsm_adjl_df[ |
|
|
gsm_adjl_df["BSC"].notna() |
|
|
& gsm_adjl_df["BCF"].notna() |
|
|
& gsm_adjl_df["BTS"].notna() |
|
|
].reset_index(drop=True) |
|
|
|
|
|
|
|
|
gsm_adjl_df["ID_BTS"] = ( |
|
|
gsm_adjl_df[["BSC", "BCF", "BTS"]].astype(str).agg("_".join, axis=1) |
|
|
) |
|
|
gsm_adjl_df["ID_BTS"] = gsm_adjl_df["ID_BTS"].str.replace(".0", "", regex=False) |
|
|
gsm_adjl_df["adjl_band"] = gsm_adjl_df["earfcn"].map(UtilsVars.lte_band) |
|
|
|
|
|
|
|
|
gsm_adjl_df = pd.merge(gsm_adjl_df, df_bts, on="ID_BTS", how="left") |
|
|
|
|
|
|
|
|
gsm_adjl_df_band = adjl_band(gsm_adjl_df, "ID_BTS", "adjl_band") |
|
|
gsm_adjl_df = pd.merge(gsm_adjl_df, gsm_adjl_df_band, on="ID_BTS", how="left") |
|
|
|
|
|
|
|
|
gsm_adjl_df["Code_Sector_band"] = ( |
|
|
gsm_adjl_df[["Code_Sector", "adjl_band"]].astype(str).agg("_".join, axis=1) |
|
|
) |
|
|
|
|
|
|
|
|
gsm_adjl_df = gsm_adjl_df.merge(lte_df_config, on="Code_Sector", how="left") |
|
|
gsm_adjl_df = gsm_adjl_df.merge(lte_df_band_tac, on="Code_Sector_band", how="left") |
|
|
gsm_adjl_df = gsm_adjl_df.merge(lte_df_global_tac, on="Code_Sector", how="left") |
|
|
|
|
|
|
|
|
gsm_adjl_df["final_tac"] = gsm_adjl_df["tac"].fillna(gsm_adjl_df["global_tac"]) |
|
|
|
|
|
|
|
|
gsm_adjl_df["check_bands"] = gsm_adjl_df.apply(check_bands, axis=1) |
|
|
gsm_adjl_df["missing_bands"] = gsm_adjl_df.apply(missing_bands, axis=1) |
|
|
gsm_adjl_df["check_tac"] = gsm_adjl_df["lteAdjCellTac"] == gsm_adjl_df["final_tac"] |
|
|
|
|
|
|
|
|
gsm_adjl_df = gsm_adjl_df.drop( |
|
|
columns=["Code_Sector_band", "tac", "band", "global_tac"] |
|
|
) |
|
|
|
|
|
|
|
|
df_bts["adjl_exists"] = df_bts["ID_BTS"].isin(gsm_adjl_df["ID_BTS"]) |
|
|
|
|
|
|
|
|
|
|
|
wcdma_adjl_df = wcdma_adjl_df[ |
|
|
wcdma_adjl_df["RNC"].notna() |
|
|
& wcdma_adjl_df["WBTS"].notna() |
|
|
& wcdma_adjl_df["WCEL"].notna() |
|
|
].reset_index(drop=True) |
|
|
|
|
|
|
|
|
wcdma_adjl_df["ID_WCEL"] = ( |
|
|
wcdma_adjl_df[["RNC", "WBTS", "WCEL"]].astype(str).agg("_".join, axis=1) |
|
|
) |
|
|
wcdma_adjl_df["ID_WCEL"] = wcdma_adjl_df["ID_WCEL"].str.replace( |
|
|
".0", "", regex=False |
|
|
) |
|
|
wcdma_adjl_df["adjl_band"] = wcdma_adjl_df["AdjLEARFCN"].map(UtilsVars.lte_band) |
|
|
|
|
|
|
|
|
wcdma_adjl_df = pd.merge(wcdma_adjl_df, df_wcel, on="ID_WCEL", how="left") |
|
|
|
|
|
|
|
|
wcdma_adjl_df_band = adjl_band(wcdma_adjl_df, "ID_WCEL", "adjl_band") |
|
|
wcdma_adjl_df = pd.merge( |
|
|
wcdma_adjl_df, wcdma_adjl_df_band, on="ID_WCEL", how="left" |
|
|
) |
|
|
|
|
|
|
|
|
wcdma_adjl_df["Code_Sector_band"] = ( |
|
|
wcdma_adjl_df[["Code_Sector", "adjl_band"]].astype(str).agg("_".join, axis=1) |
|
|
) |
|
|
|
|
|
|
|
|
wcdma_adjl_df = wcdma_adjl_df.merge(lte_df_config, on="Code_Sector", how="left") |
|
|
|
|
|
|
|
|
wcdma_adjl_df["check_bands"] = wcdma_adjl_df.apply(check_bands, axis=1) |
|
|
wcdma_adjl_df["missing_bands"] = wcdma_adjl_df.apply(missing_bands, axis=1) |
|
|
|
|
|
|
|
|
df_wcel["adjl_exists"] = df_wcel["ID_WCEL"].isin(wcdma_adjl_df["ID_WCEL"]) |
|
|
|
|
|
return [gsm_adjl_df, wcdma_adjl_df, df_bts, df_wcel, lte_df] |
|
|
|
|
|
|
|
|
def process_adjl_data_to_excel(file_path: str) -> None: |
|
|
""" |
|
|
Process ADJL data and save the result into an Excel-like format via UtilsVars. |
|
|
""" |
|
|
adjl_dfs = process_adjl_data(file_path) |
|
|
UtilsVars.adjl_database = convert_dfs( |
|
|
adjl_dfs, ["GSM_ADJL", "WCDMA_ADJL", "BTS", "WCEL", "LTE"] |
|
|
) |
|
|
|