Spaces:
Running
Running
Commit
Β·
492f435
1
Parent(s):
caa5e2c
update column names
Browse files
results/BOOM_leaderboard.csv
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model,model_type,MASE_6750_scaled,CRPS_6750_scaled,Rank_6750_scaled,MAE_663_unscaled,CRPS_663_unscaled,Rank_663_unscaled
|
2 |
+
Toto-Open-Base-1.0,pretrained,0.617,0.375,2.351,0.001,0.025,7.549
|
3 |
+
moirai_1.1_base,pretrained,0.710,0.428,4.278,0.000,0.003,5.644
|
4 |
+
moirai_1.1_large,pretrained,0.720,0.436,4.499,0.001,0.005,6.707
|
5 |
+
moirai_1.1_small,pretrained,0.738,0.447,4.796,0.001,0.009,7.404
|
6 |
+
timesfm_2_0_500m,pretrained,0.725,0.447,5.153,0.014,0.091,10.029
|
7 |
+
chronos_bolt_base,pretrained,0.726,0.451,5.446,0.003,0.019,7.682
|
8 |
+
chronos_bolt_small,pretrained,0.733,0.455,5.793,0.003,0.022,8.140
|
9 |
+
autoarima,statistical,0.824,0.736,9.171,0.000,0.001,5.496
|
10 |
+
timer,pretrained,0.796,0.639,9.356,0.001,0.005,6.474
|
11 |
+
time-moe,pretrained,0.806,0.649,9.369,0.001,0.005,8.505
|
12 |
+
visionts,pretrained,0.991,0.675,10.336,0.001,0.009,8.538
|
13 |
+
autoets,statistical,0.842,1.975,10.956,0.000,0.030,6.992
|
14 |
+
autotheta,statistical,1.123,1.018,11.712,0.001,0.002,6.513
|
15 |
+
naive,statistical,1.000,1.000,11.783,0.000,0.006,9.326
|
results/BOOM_v8_leaderboard_dd_bench_test_scaled_separate_zero_inflated_shifted_gmean_no_grid_search_context_2048_toto_checkpoint_000026_2025-05-04T13_00_15+00_00.csv
DELETED
@@ -1,15 +0,0 @@
|
|
1 |
-
model,MASE-6750-scaled,CRPS-6750-scaled,Rank-6750-scaled,eval_metrics/MAE[0.5]-663-unscaled,CRPS-663-unscaled,Rank-663-unscaled
|
2 |
-
dd-data-science-us1-prod_ray_foundation-models_TOTO_base-no-dual-softmax-no-tsmixup-1746214361_TorchTrainer_37d72_00000_0_2025-05-02_19-32-43_checkpoint_000026,0.617,0.375,2.351,0.001,0.025,7.549
|
3 |
-
moirai_1.1_base,0.710,0.428,4.278,0.000,0.003,5.644
|
4 |
-
moirai_1.1_large,0.720,0.436,4.499,0.001,0.005,6.707
|
5 |
-
moirai_1.1_small,0.738,0.447,4.796,0.001,0.009,7.404
|
6 |
-
timesfm_2_0_500m,0.725,0.447,5.153,0.014,0.091,10.029
|
7 |
-
chronos_bolt_base,0.726,0.451,5.446,0.003,0.019,7.682
|
8 |
-
chronos_bolt_small,0.733,0.455,5.793,0.003,0.022,8.140
|
9 |
-
autoarima,0.824,0.736,9.171,0.000,0.001,5.496
|
10 |
-
timer,0.796,0.639,9.356,0.001,0.005,6.474
|
11 |
-
time-moe,0.806,0.649,9.369,0.001,0.005,8.505
|
12 |
-
visionts,0.991,0.675,10.336,0.001,0.009,8.538
|
13 |
-
autoets,0.842,1.975,10.956,0.000,0.030,6.992
|
14 |
-
autotheta,1.123,1.018,11.712,0.001,0.002,6.513
|
15 |
-
naive,1.000,1.000,11.783,0.000,0.006,9.326
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/display/utils.py
CHANGED
@@ -5,6 +5,7 @@ import pandas as pd
|
|
5 |
|
6 |
from src.about import Tasks
|
7 |
|
|
|
8 |
def fields(raw_class):
|
9 |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
10 |
|
@@ -20,29 +21,34 @@ class ColumnContent:
|
|
20 |
hidden: bool = False
|
21 |
never_hidden: bool = False
|
22 |
|
|
|
23 |
## Leaderboard columns
|
24 |
auto_eval_column_dict = []
|
25 |
# Init
|
26 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
27 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
28 |
-
#Scores
|
29 |
-
auto_eval_column_dict.append(["
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
32 |
# Model information
|
33 |
-
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
34 |
-
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
35 |
-
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
36 |
-
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
37 |
-
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
38 |
-
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
39 |
-
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub β€οΈ", "number", False)])
|
40 |
-
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
41 |
-
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
42 |
|
43 |
# We use make dataclass to dynamically fill the scores from Tasks
|
44 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
45 |
|
|
|
46 |
## For the queue columns in the submission tab
|
47 |
@dataclass(frozen=True)
|
48 |
class EvalQueueColumn: # Queue column
|
@@ -53,19 +59,21 @@ class EvalQueueColumn: # Queue column
|
|
53 |
weight_type = ColumnContent("weight_type", "str", "Original")
|
54 |
status = ColumnContent("status", "str", True)
|
55 |
|
|
|
56 |
## All the model information that we might need
|
57 |
@dataclass
|
58 |
class ModelDetails:
|
59 |
name: str
|
60 |
display_name: str = ""
|
61 |
-
symbol: str = ""
|
62 |
|
63 |
|
64 |
class ModelType(Enum):
|
65 |
-
PT = ModelDetails(name="pretrained", symbol="π’")
|
66 |
-
FT = ModelDetails(name="fine-tuned", symbol="πΆ")
|
67 |
-
|
68 |
-
|
|
|
69 |
Unknown = ModelDetails(name="", symbol="?")
|
70 |
|
71 |
def to_str(self, separator=" "):
|
@@ -77,17 +85,19 @@ class ModelType(Enum):
|
|
77 |
return ModelType.FT
|
78 |
if "pretrained" in type or "π’" in type:
|
79 |
return ModelType.PT
|
80 |
-
if "
|
81 |
-
return ModelType.
|
82 |
-
if "
|
83 |
-
return ModelType.
|
84 |
return ModelType.Unknown
|
85 |
|
|
|
86 |
class WeightType(Enum):
|
87 |
Adapter = ModelDetails("Adapter")
|
88 |
Original = ModelDetails("Original")
|
89 |
Delta = ModelDetails("Delta")
|
90 |
|
|
|
91 |
class Precision(Enum):
|
92 |
float16 = ModelDetails("float16")
|
93 |
bfloat16 = ModelDetails("bfloat16")
|
@@ -100,6 +110,7 @@ class Precision(Enum):
|
|
100 |
return Precision.bfloat16
|
101 |
return Precision.Unknown
|
102 |
|
|
|
103 |
# Column selection
|
104 |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
105 |
|
@@ -107,4 +118,3 @@ EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
|
107 |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
108 |
|
109 |
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
|
110 |
-
|
|
|
5 |
|
6 |
from src.about import Tasks
|
7 |
|
8 |
+
|
9 |
def fields(raw_class):
|
10 |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
11 |
|
|
|
21 |
hidden: bool = False
|
22 |
never_hidden: bool = False
|
23 |
|
24 |
+
|
25 |
## Leaderboard columns
|
26 |
auto_eval_column_dict = []
|
27 |
# Init
|
28 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
29 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
30 |
+
# Scores
|
31 |
+
auto_eval_column_dict.append(["MASE_6750_scaled", ColumnContent, ColumnContent("MASE_scaled", "number", True)])
|
32 |
+
auto_eval_column_dict.append(["CRPS_6750_scaled", ColumnContent, ColumnContent("CRPS_scaled", "number", True)])
|
33 |
+
auto_eval_column_dict.append(["Rank_6750_scaled", ColumnContent, ColumnContent("Rank_scaled", "number", True)])
|
34 |
+
auto_eval_column_dict.append(["MAE_663_unscaled", ColumnContent, ColumnContent("MAE[0.5]_unscaled", "number", True)])
|
35 |
+
auto_eval_column_dict.append(["CRPS_663_unscaled", ColumnContent, ColumnContent("CRPS_unscaled", "number", True)])
|
36 |
+
auto_eval_column_dict.append(["Rank_663_unscaled", ColumnContent, ColumnContent("Rank_unscaled", "number", True)])
|
37 |
# Model information
|
38 |
+
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False, hidden=True)])
|
39 |
+
# auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
40 |
+
# auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
41 |
+
# auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
42 |
+
# auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
43 |
+
# auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
44 |
+
# auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub β€οΈ", "number", False)])
|
45 |
+
# auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
46 |
+
# auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
47 |
|
48 |
# We use make dataclass to dynamically fill the scores from Tasks
|
49 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
50 |
|
51 |
+
|
52 |
## For the queue columns in the submission tab
|
53 |
@dataclass(frozen=True)
|
54 |
class EvalQueueColumn: # Queue column
|
|
|
59 |
weight_type = ColumnContent("weight_type", "str", "Original")
|
60 |
status = ColumnContent("status", "str", True)
|
61 |
|
62 |
+
|
63 |
## All the model information that we might need
|
64 |
@dataclass
|
65 |
class ModelDetails:
|
66 |
name: str
|
67 |
display_name: str = ""
|
68 |
+
symbol: str = "" # emoji
|
69 |
|
70 |
|
71 |
class ModelType(Enum):
|
72 |
+
PT = ModelDetails(name="π’ pretrained", symbol="π’")
|
73 |
+
FT = ModelDetails(name="πΆ fine-tuned", symbol="πΆ")
|
74 |
+
DL = ModelDetails(name="π· deep-learning", symbol="π·")
|
75 |
+
ST = ModelDetails(name="π£ statistical", symbol="π£")
|
76 |
+
|
77 |
Unknown = ModelDetails(name="", symbol="?")
|
78 |
|
79 |
def to_str(self, separator=" "):
|
|
|
85 |
return ModelType.FT
|
86 |
if "pretrained" in type or "π’" in type:
|
87 |
return ModelType.PT
|
88 |
+
if "deep-learning" in type or "π¦" in type:
|
89 |
+
return ModelType.DL
|
90 |
+
if "statistical" in type or "π£" in type:
|
91 |
+
return ModelType.ST
|
92 |
return ModelType.Unknown
|
93 |
|
94 |
+
|
95 |
class WeightType(Enum):
|
96 |
Adapter = ModelDetails("Adapter")
|
97 |
Original = ModelDetails("Original")
|
98 |
Delta = ModelDetails("Delta")
|
99 |
|
100 |
+
|
101 |
class Precision(Enum):
|
102 |
float16 = ModelDetails("float16")
|
103 |
bfloat16 = ModelDetails("bfloat16")
|
|
|
110 |
return Precision.bfloat16
|
111 |
return Precision.Unknown
|
112 |
|
113 |
+
|
114 |
# Column selection
|
115 |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
116 |
|
|
|
118 |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
119 |
|
120 |
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
|
|