BOOM / src /populate.py
annamonica's picture
update-leaderboard (#2)
cebed79 verified
import json
import os
import pandas as pd
from dataclasses import fields
from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn, EvalQueueColumn
from src.leaderboard.read_evals import get_raw_eval_results
from src.display.utils import ModelType
# def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
# """Creates a dataframe from all the individual experiment results"""
# raw_data = get_raw_eval_results(results_path, requests_path)
# all_data_json = [v.to_dict() for v in raw_data]
# df = pd.DataFrame.from_records(all_data_json)
# df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
# df = df[cols].round(decimals=2)
# # filter out if any of the benchmarks have not been produced
# df = df[has_no_nan_values(df, benchmark_cols)]
# return df
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
"""
Processes a STATIC results CSV file to generate a leaderboard DataFrame with formatted columns and sorted values.
Args:
results_path (str): The file path to the results CSV file.
Returns:
pd.DataFrame: A processed DataFrame with renamed columns, additional formatting, and sorted values.
Notes:
- The function reads a CSV file from the given `results_path`.
- Internal column names are mapped to display names using `AutoEvalColumn`.
- A new column for model type symbols is created by parsing the `model_type` column.
- The `model_type` column is updated to prepend the model type symbol.
- The DataFrame is sorted by the `Rank_6750_scaled` column in ascending order.
"""
df = pd.read_csv(results_path)
# Create the mapping from internal column name to display name
column_mapping = {field.name: getattr(AutoEvalColumn, field.name).name for field in fields(AutoEvalColumn)}
# Assuming `df` is your DataFrame:
df.rename(columns=column_mapping, inplace=True)
# Create a new column for model type symbol by parsing the model_type column
df[AutoEvalColumn.model_type_symbol.name] = df[AutoEvalColumn.model_type.name].apply(
lambda x: ModelType.from_str(x).value.symbol
)
# Prepend the value of model_type_symbol to the value of model_type
df[AutoEvalColumn.model_type.name] = (
df[AutoEvalColumn.model_type_symbol.name] + " " + df[AutoEvalColumn.model_type.name]
)
# Move the model_type_symbol column to the beginning
cols = [AutoEvalColumn.model_type_symbol.name] + [
col for col in df.columns if col != AutoEvalColumn.model_type_symbol.name
]
df = df[cols]
df = df.sort_values(by=[AutoEvalColumn.Rank_6750_scaled.name], ascending=True)
return df
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
"""Creates the different dataframes for the evaluation queues requestes"""
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
all_evals = []
for entry in entries:
if ".json" in entry:
file_path = os.path.join(save_path, entry)
with open(file_path) as fp:
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
elif ".md" not in entry:
# this is a folder
sub_entries = [
e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")
]
for sub_entry in sub_entries:
file_path = os.path.join(save_path, entry, sub_entry)
with open(file_path) as fp:
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
df_running = pd.DataFrame.from_records(running_list, columns=cols)
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
return df_finished[cols], df_running[cols], df_pending[cols]