Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns | |
| import pandas as pd | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| from src.populate import get_model_info_df, get_merged_df | |
| from src.about import ( | |
| CITATION_BUTTON_LABEL, | |
| CITATION_BUTTON_TEXT, | |
| EVALUATION_QUEUE_TEXT, | |
| INTRODUCTION_TEXT, | |
| LLM_BENCHMARKS_TEXT, | |
| TITLE, | |
| ) | |
| from src.display.css_html_js import custom_css | |
| from src.display.utils import ( | |
| BENCHMARK_COLS, | |
| COLS, | |
| EVAL_COLS, | |
| EVAL_TYPES, | |
| AutoEvalColumn, | |
| ModelType, | |
| fields, | |
| WeightType, | |
| Precision, | |
| ) | |
| from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN | |
| from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
| from src.submission.submit import add_new_eval | |
| def restart_space(): | |
| API.restart_space(repo_id=REPO_ID, token=TOKEN) | |
| ### Space initialisation | |
| # try: | |
| # print(EVAL_REQUESTS_PATH) | |
| # snapshot_download( | |
| # repo_id=QUEUE_REPO, | |
| # local_dir=EVAL_REQUESTS_PATH, | |
| # repo_type="dataset", | |
| # tqdm_class=None, | |
| # etag_timeout=30, | |
| # token=TOKEN, | |
| # ) | |
| # except Exception: | |
| # restart_space() | |
| # try: | |
| # print(EVAL_RESULTS_PATH) | |
| # snapshot_download( | |
| # repo_id=RESULTS_REPO, | |
| # local_dir=EVAL_RESULTS_PATH, | |
| # repo_type="dataset", | |
| # tqdm_class=None, | |
| # etag_timeout=30, | |
| # token=TOKEN, | |
| # ) | |
| # except Exception: | |
| # restart_space() | |
| LEADERBOARD_DF = get_leaderboard_df( | |
| EVAL_RESULTS_PATH + "/leaderboards/BOOM_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS | |
| ) | |
| LEADERBOARD_DF_DOMAIN = get_leaderboard_df( | |
| EVAL_RESULTS_PATH + "/leaderboards/BOOM_domain_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS | |
| ) | |
| LEADERBOARD_DF_METRIC_TYPE = get_leaderboard_df( | |
| EVAL_RESULTS_PATH + "/leaderboards/BOOM_metric_type_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS | |
| ) | |
| LEADERBOARD_DF_TERM = get_leaderboard_df( | |
| EVAL_RESULTS_PATH + "/leaderboards/BOOM_term_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS | |
| ) | |
| LEADERBOARD_DF_BOOMLET = get_leaderboard_df( | |
| EVAL_RESULTS_PATH + "/leaderboards/BOOMLET_leaderboard.csv", EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS | |
| ) | |
| model_info_df = get_model_info_df(EVAL_RESULTS_PATH) | |
| # ( | |
| # finished_eval_queue_df, | |
| # running_eval_queue_df, | |
| # pending_eval_queue_df, | |
| # ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
| def init_leaderboard(dataframe, model_info_df): | |
| if dataframe is None or dataframe.empty: | |
| raise ValueError("Leaderboard DataFrame is empty or None.") | |
| merged_df = get_merged_df(dataframe, model_info_df) | |
| if "Rank" in merged_df.columns: | |
| merged_df = merged_df.sort_values(by=["Rank"], ascending=True) | |
| else: | |
| # Sort by the first CRPS column if the Rank column is not present | |
| crps_cols = [col for col in merged_df.columns if "CRPS" in col] | |
| if crps_cols: | |
| merged_df = merged_df.sort_values(by=crps_cols[0], ascending=True) | |
| # Move the model_type_symbol column to the beginning | |
| cols = [AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name] + sorted( | |
| [ | |
| col | |
| for col in merged_df.columns | |
| if col not in [AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name] | |
| ] | |
| ) | |
| merged_df = merged_df[cols] | |
| col2type_dict = {c.name: c.type for c in fields(AutoEvalColumn)} | |
| datatype_list = [col2type_dict[col] if col in col2type_dict else "number" for col in merged_df.columns] | |
| model_info_col_list = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default] | |
| default_selection_list = list(dataframe.columns) + model_info_col_list | |
| return Leaderboard( | |
| value=merged_df, | |
| datatype=datatype_list, | |
| select_columns=SelectColumns( | |
| default_selection=default_selection_list, | |
| cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden], | |
| label="Select Columns to Display:", | |
| ), | |
| search_columns=[AutoEvalColumn.model.name], | |
| hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], | |
| filter_columns=[ | |
| ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"), | |
| ], | |
| bool_checkboxgroup_label="Hide models", | |
| column_widths=[40, 180] + [160 for _ in range(len(merged_df.columns) - 2)], | |
| wrap=True, | |
| interactive=False, | |
| ) | |
| demo = gr.Blocks(css=custom_css) | |
| with demo: | |
| gr.HTML(TITLE) | |
| gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
| with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
| with gr.TabItem("π Overall", elem_id="boom-benchmark-tab-table", id=0): | |
| leaderboard = init_leaderboard(LEADERBOARD_DF, model_info_df) | |
| with gr.TabItem("π By Domain", elem_id="boom-benchmark-tab-table", id=1): | |
| leaderboard = init_leaderboard(LEADERBOARD_DF_DOMAIN, model_info_df) | |
| with gr.TabItem("π By Metric Type", elem_id="boom-benchmark-tab-table", id=2): | |
| leaderboard = init_leaderboard(LEADERBOARD_DF_METRIC_TYPE, model_info_df) | |
| with gr.TabItem("π By Forecast Horizon", elem_id="boom-benchmark-tab-table", id=3): | |
| leaderboard = init_leaderboard(LEADERBOARD_DF_TERM, model_info_df) | |
| with gr.TabItem("π BOOMLET", elem_id="boom-benchmark-tab-table", id=4): | |
| leaderboard = init_leaderboard(LEADERBOARD_DF_BOOMLET, model_info_df) | |
| with gr.TabItem("π About", elem_id="boom-benchmark-tab-table", id=5): | |
| gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
| with gr.Row(): | |
| with gr.Accordion("π Citation", open=False): | |
| citation_button = gr.Textbox( | |
| value=CITATION_BUTTON_TEXT, | |
| label=CITATION_BUTTON_LABEL, | |
| lines=20, | |
| elem_id="citation-button", | |
| show_copy_button=True, | |
| ) | |
| scheduler = BackgroundScheduler() | |
| scheduler.add_job(restart_space, "interval", seconds=1800) | |
| scheduler.start() | |
| demo.queue(default_concurrency_limit=40).launch() | |