VIT_Demo / app.py
benjaminStreltzin's picture
Update app.py
333fd10 verified
raw
history blame
772 Bytes
import gradio as gr
from PIL import Image
from vit_model_test import CustomModel
# Initialize the model
model = CustomModel()
def predict(image: Image.Image):
# Get predictions from the model
label, confidence = model.predict(image)
# Determine the result based on the label
if label == 1:
result = "AI image"
else:
result = "Real image"
return result, f"Confidence: {confidence:.2f}%"
# Define the Gradio interface with updated API
demo = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil"),
outputs=[gr.Textbox(), gr.Textbox()],
title="Vision Transformer Model",
description="Upload an image to classify it using the Vision Transformer model."
)
# Launch the Gradio interface
demo.launch()