Spaces:
Running
Running
Joseph Pollack
commited on
Commit
·
026ee5d
1
Parent(s):
016b413
Restore recent changes
Browse files- docs/api/agents.md +270 -0
- docs/api/models.md +248 -0
- docs/api/orchestrators.md +195 -0
- docs/api/services.md +201 -0
- docs/api/tools.md +235 -0
- docs/architecture/agents.md +192 -0
- docs/architecture/middleware.md +142 -0
- docs/architecture/services.md +142 -0
- docs/architecture/tools.md +175 -0
- docs/contributing/code-quality.md +81 -0
- docs/contributing/code-style.md +61 -0
- docs/contributing/error-handling.md +69 -0
- docs/contributing/implementation-patterns.md +84 -0
- docs/contributing/index.md +163 -0
- docs/contributing/prompt-engineering.md +69 -0
- docs/contributing/testing.md +65 -0
- docs/getting-started/examples.md +209 -0
- docs/getting-started/installation.md +148 -0
- docs/getting-started/mcp-integration.md +215 -0
- docs/getting-started/quick-start.md +119 -0
- docs/license.md +39 -0
- docs/overview/architecture.md +196 -0
- docs/overview/features.md +148 -0
- docs/team.md +44 -0
- src/app.py +516 -157
- src/middleware/state_machine.py +4 -0
- src/tools/crawl_adapter.py +4 -0
- src/tools/web_search_adapter.py +4 -0
- tests/unit/middleware/__init__.py +14 -0
- tests/unit/middleware/test_budget_tracker_phase7.py +14 -0
- tests/unit/middleware/test_state_machine.py +14 -0
- tests/unit/middleware/test_workflow_manager.py +14 -0
- tests/unit/orchestrator/__init__.py +14 -0
docs/api/agents.md
ADDED
|
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Agents API Reference
|
| 2 |
+
|
| 3 |
+
This page documents the API for DeepCritical agents.
|
| 4 |
+
|
| 5 |
+
## KnowledgeGapAgent
|
| 6 |
+
|
| 7 |
+
**Module**: `src.agents.knowledge_gap`
|
| 8 |
+
|
| 9 |
+
**Purpose**: Evaluates research state and identifies knowledge gaps.
|
| 10 |
+
|
| 11 |
+
### Methods
|
| 12 |
+
|
| 13 |
+
#### `evaluate`
|
| 14 |
+
|
| 15 |
+
```python
|
| 16 |
+
async def evaluate(
|
| 17 |
+
self,
|
| 18 |
+
query: str,
|
| 19 |
+
background_context: str,
|
| 20 |
+
conversation_history: Conversation,
|
| 21 |
+
iteration: int,
|
| 22 |
+
time_elapsed_minutes: float,
|
| 23 |
+
max_time_minutes: float
|
| 24 |
+
) -> KnowledgeGapOutput
|
| 25 |
+
```
|
| 26 |
+
|
| 27 |
+
Evaluates research completeness and identifies outstanding knowledge gaps.
|
| 28 |
+
|
| 29 |
+
**Parameters**:
|
| 30 |
+
- `query`: Research query string
|
| 31 |
+
- `background_context`: Background context for the query
|
| 32 |
+
- `conversation_history`: Conversation history with previous iterations
|
| 33 |
+
- `iteration`: Current iteration number
|
| 34 |
+
- `time_elapsed_minutes`: Elapsed time in minutes
|
| 35 |
+
- `max_time_minutes`: Maximum time limit in minutes
|
| 36 |
+
|
| 37 |
+
**Returns**: `KnowledgeGapOutput` with:
|
| 38 |
+
- `research_complete`: Boolean indicating if research is complete
|
| 39 |
+
- `outstanding_gaps`: List of remaining knowledge gaps
|
| 40 |
+
|
| 41 |
+
## ToolSelectorAgent
|
| 42 |
+
|
| 43 |
+
**Module**: `src.agents.tool_selector`
|
| 44 |
+
|
| 45 |
+
**Purpose**: Selects appropriate tools for addressing knowledge gaps.
|
| 46 |
+
|
| 47 |
+
### Methods
|
| 48 |
+
|
| 49 |
+
#### `select_tools`
|
| 50 |
+
|
| 51 |
+
```python
|
| 52 |
+
async def select_tools(
|
| 53 |
+
self,
|
| 54 |
+
query: str,
|
| 55 |
+
knowledge_gaps: list[str],
|
| 56 |
+
available_tools: list[str]
|
| 57 |
+
) -> AgentSelectionPlan
|
| 58 |
+
```
|
| 59 |
+
|
| 60 |
+
Selects tools for addressing knowledge gaps.
|
| 61 |
+
|
| 62 |
+
**Parameters**:
|
| 63 |
+
- `query`: Research query string
|
| 64 |
+
- `knowledge_gaps`: List of knowledge gaps to address
|
| 65 |
+
- `available_tools`: List of available tool names
|
| 66 |
+
|
| 67 |
+
**Returns**: `AgentSelectionPlan` with list of `AgentTask` objects.
|
| 68 |
+
|
| 69 |
+
## WriterAgent
|
| 70 |
+
|
| 71 |
+
**Module**: `src.agents.writer`
|
| 72 |
+
|
| 73 |
+
**Purpose**: Generates final reports from research findings.
|
| 74 |
+
|
| 75 |
+
### Methods
|
| 76 |
+
|
| 77 |
+
#### `write_report`
|
| 78 |
+
|
| 79 |
+
```python
|
| 80 |
+
async def write_report(
|
| 81 |
+
self,
|
| 82 |
+
query: str,
|
| 83 |
+
findings: str,
|
| 84 |
+
output_length: str = "medium",
|
| 85 |
+
output_instructions: str | None = None
|
| 86 |
+
) -> str
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+
Generates a markdown report from research findings.
|
| 90 |
+
|
| 91 |
+
**Parameters**:
|
| 92 |
+
- `query`: Research query string
|
| 93 |
+
- `findings`: Research findings to include in report
|
| 94 |
+
- `output_length`: Desired output length ("short", "medium", "long")
|
| 95 |
+
- `output_instructions`: Additional instructions for report generation
|
| 96 |
+
|
| 97 |
+
**Returns**: Markdown string with numbered citations.
|
| 98 |
+
|
| 99 |
+
## LongWriterAgent
|
| 100 |
+
|
| 101 |
+
**Module**: `src.agents.long_writer`
|
| 102 |
+
|
| 103 |
+
**Purpose**: Long-form report generation with section-by-section writing.
|
| 104 |
+
|
| 105 |
+
### Methods
|
| 106 |
+
|
| 107 |
+
#### `write_next_section`
|
| 108 |
+
|
| 109 |
+
```python
|
| 110 |
+
async def write_next_section(
|
| 111 |
+
self,
|
| 112 |
+
query: str,
|
| 113 |
+
draft: ReportDraft,
|
| 114 |
+
section_title: str,
|
| 115 |
+
section_content: str
|
| 116 |
+
) -> LongWriterOutput
|
| 117 |
+
```
|
| 118 |
+
|
| 119 |
+
Writes the next section of a long-form report.
|
| 120 |
+
|
| 121 |
+
**Parameters**:
|
| 122 |
+
- `query`: Research query string
|
| 123 |
+
- `draft`: Current report draft
|
| 124 |
+
- `section_title`: Title of the section to write
|
| 125 |
+
- `section_content`: Content/guidance for the section
|
| 126 |
+
|
| 127 |
+
**Returns**: `LongWriterOutput` with updated draft.
|
| 128 |
+
|
| 129 |
+
#### `write_report`
|
| 130 |
+
|
| 131 |
+
```python
|
| 132 |
+
async def write_report(
|
| 133 |
+
self,
|
| 134 |
+
query: str,
|
| 135 |
+
report_title: str,
|
| 136 |
+
report_draft: ReportDraft
|
| 137 |
+
) -> str
|
| 138 |
+
```
|
| 139 |
+
|
| 140 |
+
Generates final report from draft.
|
| 141 |
+
|
| 142 |
+
**Parameters**:
|
| 143 |
+
- `query`: Research query string
|
| 144 |
+
- `report_title`: Title of the report
|
| 145 |
+
- `report_draft`: Complete report draft
|
| 146 |
+
|
| 147 |
+
**Returns**: Final markdown report string.
|
| 148 |
+
|
| 149 |
+
## ProofreaderAgent
|
| 150 |
+
|
| 151 |
+
**Module**: `src.agents.proofreader`
|
| 152 |
+
|
| 153 |
+
**Purpose**: Proofreads and polishes report drafts.
|
| 154 |
+
|
| 155 |
+
### Methods
|
| 156 |
+
|
| 157 |
+
#### `proofread`
|
| 158 |
+
|
| 159 |
+
```python
|
| 160 |
+
async def proofread(
|
| 161 |
+
self,
|
| 162 |
+
query: str,
|
| 163 |
+
report_title: str,
|
| 164 |
+
report_draft: ReportDraft
|
| 165 |
+
) -> str
|
| 166 |
+
```
|
| 167 |
+
|
| 168 |
+
Proofreads and polishes a report draft.
|
| 169 |
+
|
| 170 |
+
**Parameters**:
|
| 171 |
+
- `query`: Research query string
|
| 172 |
+
- `report_title`: Title of the report
|
| 173 |
+
- `report_draft`: Report draft to proofread
|
| 174 |
+
|
| 175 |
+
**Returns**: Polished markdown string.
|
| 176 |
+
|
| 177 |
+
## ThinkingAgent
|
| 178 |
+
|
| 179 |
+
**Module**: `src.agents.thinking`
|
| 180 |
+
|
| 181 |
+
**Purpose**: Generates observations from conversation history.
|
| 182 |
+
|
| 183 |
+
### Methods
|
| 184 |
+
|
| 185 |
+
#### `generate_observations`
|
| 186 |
+
|
| 187 |
+
```python
|
| 188 |
+
async def generate_observations(
|
| 189 |
+
self,
|
| 190 |
+
query: str,
|
| 191 |
+
background_context: str,
|
| 192 |
+
conversation_history: Conversation
|
| 193 |
+
) -> str
|
| 194 |
+
```
|
| 195 |
+
|
| 196 |
+
Generates observations from conversation history.
|
| 197 |
+
|
| 198 |
+
**Parameters**:
|
| 199 |
+
- `query`: Research query string
|
| 200 |
+
- `background_context`: Background context
|
| 201 |
+
- `conversation_history`: Conversation history
|
| 202 |
+
|
| 203 |
+
**Returns**: Observation string.
|
| 204 |
+
|
| 205 |
+
## InputParserAgent
|
| 206 |
+
|
| 207 |
+
**Module**: `src.agents.input_parser`
|
| 208 |
+
|
| 209 |
+
**Purpose**: Parses and improves user queries, detects research mode.
|
| 210 |
+
|
| 211 |
+
### Methods
|
| 212 |
+
|
| 213 |
+
#### `parse_query`
|
| 214 |
+
|
| 215 |
+
```python
|
| 216 |
+
async def parse_query(
|
| 217 |
+
self,
|
| 218 |
+
query: str
|
| 219 |
+
) -> ParsedQuery
|
| 220 |
+
```
|
| 221 |
+
|
| 222 |
+
Parses and improves a user query.
|
| 223 |
+
|
| 224 |
+
**Parameters**:
|
| 225 |
+
- `query`: Original query string
|
| 226 |
+
|
| 227 |
+
**Returns**: `ParsedQuery` with:
|
| 228 |
+
- `original_query`: Original query string
|
| 229 |
+
- `improved_query`: Refined query string
|
| 230 |
+
- `research_mode`: "iterative" or "deep"
|
| 231 |
+
- `key_entities`: List of key entities
|
| 232 |
+
- `research_questions`: List of research questions
|
| 233 |
+
|
| 234 |
+
## Factory Functions
|
| 235 |
+
|
| 236 |
+
All agents have factory functions in `src.agent_factory.agents`:
|
| 237 |
+
|
| 238 |
+
```python
|
| 239 |
+
def create_knowledge_gap_agent(model: Any | None = None) -> KnowledgeGapAgent
|
| 240 |
+
def create_tool_selector_agent(model: Any | None = None) -> ToolSelectorAgent
|
| 241 |
+
def create_writer_agent(model: Any | None = None) -> WriterAgent
|
| 242 |
+
def create_long_writer_agent(model: Any | None = None) -> LongWriterAgent
|
| 243 |
+
def create_proofreader_agent(model: Any | None = None) -> ProofreaderAgent
|
| 244 |
+
def create_thinking_agent(model: Any | None = None) -> ThinkingAgent
|
| 245 |
+
def create_input_parser_agent(model: Any | None = None) -> InputParserAgent
|
| 246 |
+
```
|
| 247 |
+
|
| 248 |
+
**Parameters**:
|
| 249 |
+
- `model`: Optional Pydantic AI model. If None, uses `get_model()` from settings.
|
| 250 |
+
|
| 251 |
+
**Returns**: Agent instance.
|
| 252 |
+
|
| 253 |
+
## See Also
|
| 254 |
+
|
| 255 |
+
- [Architecture - Agents](../architecture/agents.md) - Architecture overview
|
| 256 |
+
- [Models API](models.md) - Data models used by agents
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
|
docs/api/models.md
ADDED
|
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Models API Reference
|
| 2 |
+
|
| 3 |
+
This page documents the Pydantic models used throughout DeepCritical.
|
| 4 |
+
|
| 5 |
+
## Evidence
|
| 6 |
+
|
| 7 |
+
**Module**: `src.utils.models`
|
| 8 |
+
|
| 9 |
+
**Purpose**: Represents evidence from search results.
|
| 10 |
+
|
| 11 |
+
```python
|
| 12 |
+
class Evidence(BaseModel):
|
| 13 |
+
citation: Citation
|
| 14 |
+
content: str
|
| 15 |
+
relevance_score: float = Field(ge=0.0, le=1.0)
|
| 16 |
+
metadata: dict[str, Any] = Field(default_factory=dict)
|
| 17 |
+
```
|
| 18 |
+
|
| 19 |
+
**Fields**:
|
| 20 |
+
- `citation`: Citation information (title, URL, date, authors)
|
| 21 |
+
- `content`: Evidence text content
|
| 22 |
+
- `relevance_score`: Relevance score (0.0-1.0)
|
| 23 |
+
- `metadata`: Additional metadata dictionary
|
| 24 |
+
|
| 25 |
+
## Citation
|
| 26 |
+
|
| 27 |
+
**Module**: `src.utils.models`
|
| 28 |
+
|
| 29 |
+
**Purpose**: Citation information for evidence.
|
| 30 |
+
|
| 31 |
+
```python
|
| 32 |
+
class Citation(BaseModel):
|
| 33 |
+
title: str
|
| 34 |
+
url: str
|
| 35 |
+
date: str | None = None
|
| 36 |
+
authors: list[str] = Field(default_factory=list)
|
| 37 |
+
```
|
| 38 |
+
|
| 39 |
+
**Fields**:
|
| 40 |
+
- `title`: Article/trial title
|
| 41 |
+
- `url`: Source URL
|
| 42 |
+
- `date`: Publication date (optional)
|
| 43 |
+
- `authors`: List of authors (optional)
|
| 44 |
+
|
| 45 |
+
## KnowledgeGapOutput
|
| 46 |
+
|
| 47 |
+
**Module**: `src.utils.models`
|
| 48 |
+
|
| 49 |
+
**Purpose**: Output from knowledge gap evaluation.
|
| 50 |
+
|
| 51 |
+
```python
|
| 52 |
+
class KnowledgeGapOutput(BaseModel):
|
| 53 |
+
research_complete: bool
|
| 54 |
+
outstanding_gaps: list[str] = Field(default_factory=list)
|
| 55 |
+
```
|
| 56 |
+
|
| 57 |
+
**Fields**:
|
| 58 |
+
- `research_complete`: Boolean indicating if research is complete
|
| 59 |
+
- `outstanding_gaps`: List of remaining knowledge gaps
|
| 60 |
+
|
| 61 |
+
## AgentSelectionPlan
|
| 62 |
+
|
| 63 |
+
**Module**: `src.utils.models`
|
| 64 |
+
|
| 65 |
+
**Purpose**: Plan for tool/agent selection.
|
| 66 |
+
|
| 67 |
+
```python
|
| 68 |
+
class AgentSelectionPlan(BaseModel):
|
| 69 |
+
tasks: list[AgentTask] = Field(default_factory=list)
|
| 70 |
+
```
|
| 71 |
+
|
| 72 |
+
**Fields**:
|
| 73 |
+
- `tasks`: List of agent tasks to execute
|
| 74 |
+
|
| 75 |
+
## AgentTask
|
| 76 |
+
|
| 77 |
+
**Module**: `src.utils.models`
|
| 78 |
+
|
| 79 |
+
**Purpose**: Individual agent task.
|
| 80 |
+
|
| 81 |
+
```python
|
| 82 |
+
class AgentTask(BaseModel):
|
| 83 |
+
agent_name: str
|
| 84 |
+
query: str
|
| 85 |
+
context: dict[str, Any] = Field(default_factory=dict)
|
| 86 |
+
```
|
| 87 |
+
|
| 88 |
+
**Fields**:
|
| 89 |
+
- `agent_name`: Name of agent to use
|
| 90 |
+
- `query`: Task query
|
| 91 |
+
- `context`: Additional context dictionary
|
| 92 |
+
|
| 93 |
+
## ReportDraft
|
| 94 |
+
|
| 95 |
+
**Module**: `src.utils.models`
|
| 96 |
+
|
| 97 |
+
**Purpose**: Draft structure for long-form reports.
|
| 98 |
+
|
| 99 |
+
```python
|
| 100 |
+
class ReportDraft(BaseModel):
|
| 101 |
+
title: str
|
| 102 |
+
sections: list[ReportSection] = Field(default_factory=list)
|
| 103 |
+
references: list[Citation] = Field(default_factory=list)
|
| 104 |
+
```
|
| 105 |
+
|
| 106 |
+
**Fields**:
|
| 107 |
+
- `title`: Report title
|
| 108 |
+
- `sections`: List of report sections
|
| 109 |
+
- `references`: List of citations
|
| 110 |
+
|
| 111 |
+
## ReportSection
|
| 112 |
+
|
| 113 |
+
**Module**: `src.utils.models`
|
| 114 |
+
|
| 115 |
+
**Purpose**: Individual section in a report draft.
|
| 116 |
+
|
| 117 |
+
```python
|
| 118 |
+
class ReportSection(BaseModel):
|
| 119 |
+
title: str
|
| 120 |
+
content: str
|
| 121 |
+
order: int
|
| 122 |
+
```
|
| 123 |
+
|
| 124 |
+
**Fields**:
|
| 125 |
+
- `title`: Section title
|
| 126 |
+
- `content`: Section content
|
| 127 |
+
- `order`: Section order number
|
| 128 |
+
|
| 129 |
+
## ParsedQuery
|
| 130 |
+
|
| 131 |
+
**Module**: `src.utils.models`
|
| 132 |
+
|
| 133 |
+
**Purpose**: Parsed and improved query.
|
| 134 |
+
|
| 135 |
+
```python
|
| 136 |
+
class ParsedQuery(BaseModel):
|
| 137 |
+
original_query: str
|
| 138 |
+
improved_query: str
|
| 139 |
+
research_mode: Literal["iterative", "deep"]
|
| 140 |
+
key_entities: list[str] = Field(default_factory=list)
|
| 141 |
+
research_questions: list[str] = Field(default_factory=list)
|
| 142 |
+
```
|
| 143 |
+
|
| 144 |
+
**Fields**:
|
| 145 |
+
- `original_query`: Original query string
|
| 146 |
+
- `improved_query`: Refined query string
|
| 147 |
+
- `research_mode`: Research mode ("iterative" or "deep")
|
| 148 |
+
- `key_entities`: List of key entities
|
| 149 |
+
- `research_questions`: List of research questions
|
| 150 |
+
|
| 151 |
+
## Conversation
|
| 152 |
+
|
| 153 |
+
**Module**: `src.utils.models`
|
| 154 |
+
|
| 155 |
+
**Purpose**: Conversation history with iterations.
|
| 156 |
+
|
| 157 |
+
```python
|
| 158 |
+
class Conversation(BaseModel):
|
| 159 |
+
iterations: list[IterationData] = Field(default_factory=list)
|
| 160 |
+
```
|
| 161 |
+
|
| 162 |
+
**Fields**:
|
| 163 |
+
- `iterations`: List of iteration data
|
| 164 |
+
|
| 165 |
+
## IterationData
|
| 166 |
+
|
| 167 |
+
**Module**: `src.utils.models`
|
| 168 |
+
|
| 169 |
+
**Purpose**: Data for a single iteration.
|
| 170 |
+
|
| 171 |
+
```python
|
| 172 |
+
class IterationData(BaseModel):
|
| 173 |
+
iteration: int
|
| 174 |
+
observations: str | None = None
|
| 175 |
+
knowledge_gaps: list[str] = Field(default_factory=list)
|
| 176 |
+
tool_calls: list[dict[str, Any]] = Field(default_factory=list)
|
| 177 |
+
findings: str | None = None
|
| 178 |
+
thoughts: str | None = None
|
| 179 |
+
```
|
| 180 |
+
|
| 181 |
+
**Fields**:
|
| 182 |
+
- `iteration`: Iteration number
|
| 183 |
+
- `observations`: Generated observations
|
| 184 |
+
- `knowledge_gaps`: Identified knowledge gaps
|
| 185 |
+
- `tool_calls`: Tool calls made
|
| 186 |
+
- `findings`: Findings from tools
|
| 187 |
+
- `thoughts`: Agent thoughts
|
| 188 |
+
|
| 189 |
+
## AgentEvent
|
| 190 |
+
|
| 191 |
+
**Module**: `src.utils.models`
|
| 192 |
+
|
| 193 |
+
**Purpose**: Event emitted during research execution.
|
| 194 |
+
|
| 195 |
+
```python
|
| 196 |
+
class AgentEvent(BaseModel):
|
| 197 |
+
type: str
|
| 198 |
+
iteration: int | None = None
|
| 199 |
+
data: dict[str, Any] = Field(default_factory=dict)
|
| 200 |
+
```
|
| 201 |
+
|
| 202 |
+
**Fields**:
|
| 203 |
+
- `type`: Event type (e.g., "started", "search_complete", "complete")
|
| 204 |
+
- `iteration`: Iteration number (optional)
|
| 205 |
+
- `data`: Event data dictionary
|
| 206 |
+
|
| 207 |
+
## BudgetStatus
|
| 208 |
+
|
| 209 |
+
**Module**: `src.utils.models`
|
| 210 |
+
|
| 211 |
+
**Purpose**: Current budget status.
|
| 212 |
+
|
| 213 |
+
```python
|
| 214 |
+
class BudgetStatus(BaseModel):
|
| 215 |
+
tokens_used: int
|
| 216 |
+
tokens_limit: int
|
| 217 |
+
time_elapsed_seconds: float
|
| 218 |
+
time_limit_seconds: float
|
| 219 |
+
iterations: int
|
| 220 |
+
iterations_limit: int
|
| 221 |
+
```
|
| 222 |
+
|
| 223 |
+
**Fields**:
|
| 224 |
+
- `tokens_used`: Tokens used so far
|
| 225 |
+
- `tokens_limit`: Token limit
|
| 226 |
+
- `time_elapsed_seconds`: Elapsed time in seconds
|
| 227 |
+
- `time_limit_seconds`: Time limit in seconds
|
| 228 |
+
- `iterations`: Current iteration count
|
| 229 |
+
- `iterations_limit`: Iteration limit
|
| 230 |
+
|
| 231 |
+
## See Also
|
| 232 |
+
|
| 233 |
+
- [Architecture - Agents](../architecture/agents.md) - How models are used
|
| 234 |
+
- [Configuration](../configuration/index.md) - Model configuration
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
|
docs/api/orchestrators.md
ADDED
|
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Orchestrators API Reference
|
| 2 |
+
|
| 3 |
+
This page documents the API for DeepCritical orchestrators.
|
| 4 |
+
|
| 5 |
+
## IterativeResearchFlow
|
| 6 |
+
|
| 7 |
+
**Module**: `src.orchestrator.research_flow`
|
| 8 |
+
|
| 9 |
+
**Purpose**: Single-loop research with search-judge-synthesize cycles.
|
| 10 |
+
|
| 11 |
+
### Methods
|
| 12 |
+
|
| 13 |
+
#### `run`
|
| 14 |
+
|
| 15 |
+
```python
|
| 16 |
+
async def run(
|
| 17 |
+
self,
|
| 18 |
+
query: str,
|
| 19 |
+
background_context: str = "",
|
| 20 |
+
max_iterations: int | None = None,
|
| 21 |
+
max_time_minutes: float | None = None,
|
| 22 |
+
token_budget: int | None = None
|
| 23 |
+
) -> AsyncGenerator[AgentEvent, None]
|
| 24 |
+
```
|
| 25 |
+
|
| 26 |
+
Runs iterative research flow.
|
| 27 |
+
|
| 28 |
+
**Parameters**:
|
| 29 |
+
- `query`: Research query string
|
| 30 |
+
- `background_context`: Background context (default: "")
|
| 31 |
+
- `max_iterations`: Maximum iterations (default: from settings)
|
| 32 |
+
- `max_time_minutes`: Maximum time in minutes (default: from settings)
|
| 33 |
+
- `token_budget`: Token budget (default: from settings)
|
| 34 |
+
|
| 35 |
+
**Yields**: `AgentEvent` objects for:
|
| 36 |
+
- `started`: Research started
|
| 37 |
+
- `search_complete`: Search completed
|
| 38 |
+
- `judge_complete`: Evidence evaluation completed
|
| 39 |
+
- `synthesizing`: Generating report
|
| 40 |
+
- `complete`: Research completed
|
| 41 |
+
- `error`: Error occurred
|
| 42 |
+
|
| 43 |
+
## DeepResearchFlow
|
| 44 |
+
|
| 45 |
+
**Module**: `src.orchestrator.research_flow`
|
| 46 |
+
|
| 47 |
+
**Purpose**: Multi-section parallel research with planning and synthesis.
|
| 48 |
+
|
| 49 |
+
### Methods
|
| 50 |
+
|
| 51 |
+
#### `run`
|
| 52 |
+
|
| 53 |
+
```python
|
| 54 |
+
async def run(
|
| 55 |
+
self,
|
| 56 |
+
query: str,
|
| 57 |
+
background_context: str = "",
|
| 58 |
+
max_iterations_per_section: int | None = None,
|
| 59 |
+
max_time_minutes: float | None = None,
|
| 60 |
+
token_budget: int | None = None
|
| 61 |
+
) -> AsyncGenerator[AgentEvent, None]
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
Runs deep research flow.
|
| 65 |
+
|
| 66 |
+
**Parameters**:
|
| 67 |
+
- `query`: Research query string
|
| 68 |
+
- `background_context`: Background context (default: "")
|
| 69 |
+
- `max_iterations_per_section`: Maximum iterations per section (default: from settings)
|
| 70 |
+
- `max_time_minutes`: Maximum time in minutes (default: from settings)
|
| 71 |
+
- `token_budget`: Token budget (default: from settings)
|
| 72 |
+
|
| 73 |
+
**Yields**: `AgentEvent` objects for:
|
| 74 |
+
- `started`: Research started
|
| 75 |
+
- `planning`: Creating research plan
|
| 76 |
+
- `looping`: Running parallel research loops
|
| 77 |
+
- `synthesizing`: Synthesizing results
|
| 78 |
+
- `complete`: Research completed
|
| 79 |
+
- `error`: Error occurred
|
| 80 |
+
|
| 81 |
+
## GraphOrchestrator
|
| 82 |
+
|
| 83 |
+
**Module**: `src.orchestrator.graph_orchestrator`
|
| 84 |
+
|
| 85 |
+
**Purpose**: Graph-based execution using Pydantic AI agents as nodes.
|
| 86 |
+
|
| 87 |
+
### Methods
|
| 88 |
+
|
| 89 |
+
#### `run`
|
| 90 |
+
|
| 91 |
+
```python
|
| 92 |
+
async def run(
|
| 93 |
+
self,
|
| 94 |
+
query: str,
|
| 95 |
+
research_mode: str = "auto",
|
| 96 |
+
use_graph: bool = True
|
| 97 |
+
) -> AsyncGenerator[AgentEvent, None]
|
| 98 |
+
```
|
| 99 |
+
|
| 100 |
+
Runs graph-based research orchestration.
|
| 101 |
+
|
| 102 |
+
**Parameters**:
|
| 103 |
+
- `query`: Research query string
|
| 104 |
+
- `research_mode`: Research mode ("iterative", "deep", or "auto")
|
| 105 |
+
- `use_graph`: Whether to use graph execution (default: True)
|
| 106 |
+
|
| 107 |
+
**Yields**: `AgentEvent` objects during graph execution.
|
| 108 |
+
|
| 109 |
+
## Orchestrator Factory
|
| 110 |
+
|
| 111 |
+
**Module**: `src.orchestrator_factory`
|
| 112 |
+
|
| 113 |
+
**Purpose**: Factory for creating orchestrators.
|
| 114 |
+
|
| 115 |
+
### Functions
|
| 116 |
+
|
| 117 |
+
#### `create_orchestrator`
|
| 118 |
+
|
| 119 |
+
```python
|
| 120 |
+
def create_orchestrator(
|
| 121 |
+
search_handler: SearchHandlerProtocol,
|
| 122 |
+
judge_handler: JudgeHandlerProtocol,
|
| 123 |
+
config: dict[str, Any],
|
| 124 |
+
mode: str | None = None
|
| 125 |
+
) -> Any
|
| 126 |
+
```
|
| 127 |
+
|
| 128 |
+
Creates an orchestrator instance.
|
| 129 |
+
|
| 130 |
+
**Parameters**:
|
| 131 |
+
- `search_handler`: Search handler protocol implementation
|
| 132 |
+
- `judge_handler`: Judge handler protocol implementation
|
| 133 |
+
- `config`: Configuration dictionary
|
| 134 |
+
- `mode`: Orchestrator mode ("simple", "advanced", "magentic", or None for auto-detect)
|
| 135 |
+
|
| 136 |
+
**Returns**: Orchestrator instance.
|
| 137 |
+
|
| 138 |
+
**Raises**:
|
| 139 |
+
- `ValueError`: If requirements not met
|
| 140 |
+
|
| 141 |
+
**Modes**:
|
| 142 |
+
- `"simple"`: Legacy orchestrator
|
| 143 |
+
- `"advanced"` or `"magentic"`: Magentic orchestrator (requires OpenAI API key)
|
| 144 |
+
- `None`: Auto-detect based on API key availability
|
| 145 |
+
|
| 146 |
+
## MagenticOrchestrator
|
| 147 |
+
|
| 148 |
+
**Module**: `src.orchestrator_magentic`
|
| 149 |
+
|
| 150 |
+
**Purpose**: Multi-agent coordination using Microsoft Agent Framework.
|
| 151 |
+
|
| 152 |
+
### Methods
|
| 153 |
+
|
| 154 |
+
#### `run`
|
| 155 |
+
|
| 156 |
+
```python
|
| 157 |
+
async def run(
|
| 158 |
+
self,
|
| 159 |
+
query: str,
|
| 160 |
+
max_rounds: int = 15,
|
| 161 |
+
max_stalls: int = 3
|
| 162 |
+
) -> AsyncGenerator[AgentEvent, None]
|
| 163 |
+
```
|
| 164 |
+
|
| 165 |
+
Runs Magentic orchestration.
|
| 166 |
+
|
| 167 |
+
**Parameters**:
|
| 168 |
+
- `query`: Research query string
|
| 169 |
+
- `max_rounds`: Maximum rounds (default: 15)
|
| 170 |
+
- `max_stalls`: Maximum stalls before reset (default: 3)
|
| 171 |
+
|
| 172 |
+
**Yields**: `AgentEvent` objects converted from Magentic events.
|
| 173 |
+
|
| 174 |
+
**Requirements**:
|
| 175 |
+
- `agent-framework-core` package
|
| 176 |
+
- OpenAI API key
|
| 177 |
+
|
| 178 |
+
## See Also
|
| 179 |
+
|
| 180 |
+
- [Architecture - Orchestrators](../architecture/orchestrators.md) - Architecture overview
|
| 181 |
+
- [Graph Orchestration](../architecture/graph-orchestration.md) - Graph execution details
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
|
docs/api/services.md
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Services API Reference
|
| 2 |
+
|
| 3 |
+
This page documents the API for DeepCritical services.
|
| 4 |
+
|
| 5 |
+
## EmbeddingService
|
| 6 |
+
|
| 7 |
+
**Module**: `src.services.embeddings`
|
| 8 |
+
|
| 9 |
+
**Purpose**: Local sentence-transformers for semantic search and deduplication.
|
| 10 |
+
|
| 11 |
+
### Methods
|
| 12 |
+
|
| 13 |
+
#### `embed`
|
| 14 |
+
|
| 15 |
+
```python
|
| 16 |
+
async def embed(self, text: str) -> list[float]
|
| 17 |
+
```
|
| 18 |
+
|
| 19 |
+
Generates embedding for a text string.
|
| 20 |
+
|
| 21 |
+
**Parameters**:
|
| 22 |
+
- `text`: Text to embed
|
| 23 |
+
|
| 24 |
+
**Returns**: Embedding vector as list of floats.
|
| 25 |
+
|
| 26 |
+
#### `embed_batch`
|
| 27 |
+
|
| 28 |
+
```python
|
| 29 |
+
async def embed_batch(self, texts: list[str]) -> list[list[float]]
|
| 30 |
+
```
|
| 31 |
+
|
| 32 |
+
Generates embeddings for multiple texts.
|
| 33 |
+
|
| 34 |
+
**Parameters**:
|
| 35 |
+
- `texts`: List of texts to embed
|
| 36 |
+
|
| 37 |
+
**Returns**: List of embedding vectors.
|
| 38 |
+
|
| 39 |
+
#### `similarity`
|
| 40 |
+
|
| 41 |
+
```python
|
| 42 |
+
async def similarity(self, text1: str, text2: str) -> float
|
| 43 |
+
```
|
| 44 |
+
|
| 45 |
+
Calculates similarity between two texts.
|
| 46 |
+
|
| 47 |
+
**Parameters**:
|
| 48 |
+
- `text1`: First text
|
| 49 |
+
- `text2`: Second text
|
| 50 |
+
|
| 51 |
+
**Returns**: Similarity score (0.0-1.0).
|
| 52 |
+
|
| 53 |
+
#### `find_duplicates`
|
| 54 |
+
|
| 55 |
+
```python
|
| 56 |
+
async def find_duplicates(
|
| 57 |
+
self,
|
| 58 |
+
texts: list[str],
|
| 59 |
+
threshold: float = 0.85
|
| 60 |
+
) -> list[tuple[int, int]]
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
Finds duplicate texts based on similarity threshold.
|
| 64 |
+
|
| 65 |
+
**Parameters**:
|
| 66 |
+
- `texts`: List of texts to check
|
| 67 |
+
- `threshold`: Similarity threshold (default: 0.85)
|
| 68 |
+
|
| 69 |
+
**Returns**: List of (index1, index2) tuples for duplicate pairs.
|
| 70 |
+
|
| 71 |
+
### Factory Function
|
| 72 |
+
|
| 73 |
+
#### `get_embedding_service`
|
| 74 |
+
|
| 75 |
+
```python
|
| 76 |
+
@lru_cache(maxsize=1)
|
| 77 |
+
def get_embedding_service() -> EmbeddingService
|
| 78 |
+
```
|
| 79 |
+
|
| 80 |
+
Returns singleton EmbeddingService instance.
|
| 81 |
+
|
| 82 |
+
## LlamaIndexRAGService
|
| 83 |
+
|
| 84 |
+
**Module**: `src.services.rag`
|
| 85 |
+
|
| 86 |
+
**Purpose**: Retrieval-Augmented Generation using LlamaIndex.
|
| 87 |
+
|
| 88 |
+
### Methods
|
| 89 |
+
|
| 90 |
+
#### `ingest_evidence`
|
| 91 |
+
|
| 92 |
+
```python
|
| 93 |
+
async def ingest_evidence(self, evidence: list[Evidence]) -> None
|
| 94 |
+
```
|
| 95 |
+
|
| 96 |
+
Ingests evidence into RAG service.
|
| 97 |
+
|
| 98 |
+
**Parameters**:
|
| 99 |
+
- `evidence`: List of Evidence objects to ingest
|
| 100 |
+
|
| 101 |
+
**Note**: Requires OpenAI API key for embeddings.
|
| 102 |
+
|
| 103 |
+
#### `retrieve`
|
| 104 |
+
|
| 105 |
+
```python
|
| 106 |
+
async def retrieve(
|
| 107 |
+
self,
|
| 108 |
+
query: str,
|
| 109 |
+
top_k: int = 5
|
| 110 |
+
) -> list[Document]
|
| 111 |
+
```
|
| 112 |
+
|
| 113 |
+
Retrieves relevant documents for a query.
|
| 114 |
+
|
| 115 |
+
**Parameters**:
|
| 116 |
+
- `query`: Search query string
|
| 117 |
+
- `top_k`: Number of top results to return (default: 5)
|
| 118 |
+
|
| 119 |
+
**Returns**: List of Document objects with metadata.
|
| 120 |
+
|
| 121 |
+
#### `query`
|
| 122 |
+
|
| 123 |
+
```python
|
| 124 |
+
async def query(
|
| 125 |
+
self,
|
| 126 |
+
query: str,
|
| 127 |
+
top_k: int = 5
|
| 128 |
+
) -> str
|
| 129 |
+
```
|
| 130 |
+
|
| 131 |
+
Queries RAG service and returns formatted results.
|
| 132 |
+
|
| 133 |
+
**Parameters**:
|
| 134 |
+
- `query`: Search query string
|
| 135 |
+
- `top_k`: Number of top results to return (default: 5)
|
| 136 |
+
|
| 137 |
+
**Returns**: Formatted query results as string.
|
| 138 |
+
|
| 139 |
+
### Factory Function
|
| 140 |
+
|
| 141 |
+
#### `get_rag_service`
|
| 142 |
+
|
| 143 |
+
```python
|
| 144 |
+
@lru_cache(maxsize=1)
|
| 145 |
+
def get_rag_service() -> LlamaIndexRAGService | None
|
| 146 |
+
```
|
| 147 |
+
|
| 148 |
+
Returns singleton LlamaIndexRAGService instance, or None if OpenAI key not available.
|
| 149 |
+
|
| 150 |
+
## StatisticalAnalyzer
|
| 151 |
+
|
| 152 |
+
**Module**: `src.services.statistical_analyzer`
|
| 153 |
+
|
| 154 |
+
**Purpose**: Secure execution of AI-generated statistical code.
|
| 155 |
+
|
| 156 |
+
### Methods
|
| 157 |
+
|
| 158 |
+
#### `analyze`
|
| 159 |
+
|
| 160 |
+
```python
|
| 161 |
+
async def analyze(
|
| 162 |
+
self,
|
| 163 |
+
hypothesis: str,
|
| 164 |
+
evidence: list[Evidence],
|
| 165 |
+
data_description: str | None = None
|
| 166 |
+
) -> AnalysisResult
|
| 167 |
+
```
|
| 168 |
+
|
| 169 |
+
Analyzes a hypothesis using statistical methods.
|
| 170 |
+
|
| 171 |
+
**Parameters**:
|
| 172 |
+
- `hypothesis`: Hypothesis to analyze
|
| 173 |
+
- `evidence`: List of Evidence objects
|
| 174 |
+
- `data_description`: Optional data description
|
| 175 |
+
|
| 176 |
+
**Returns**: `AnalysisResult` with:
|
| 177 |
+
- `verdict`: SUPPORTED, REFUTED, or INCONCLUSIVE
|
| 178 |
+
- `code`: Generated analysis code
|
| 179 |
+
- `output`: Execution output
|
| 180 |
+
- `error`: Error message if execution failed
|
| 181 |
+
|
| 182 |
+
**Note**: Requires Modal credentials for sandbox execution.
|
| 183 |
+
|
| 184 |
+
## See Also
|
| 185 |
+
|
| 186 |
+
- [Architecture - Services](../architecture/services.md) - Architecture overview
|
| 187 |
+
- [Configuration](../configuration/index.md) - Service configuration
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
|
docs/api/tools.md
ADDED
|
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Tools API Reference
|
| 2 |
+
|
| 3 |
+
This page documents the API for DeepCritical search tools.
|
| 4 |
+
|
| 5 |
+
## SearchTool Protocol
|
| 6 |
+
|
| 7 |
+
All tools implement the `SearchTool` protocol:
|
| 8 |
+
|
| 9 |
+
```python
|
| 10 |
+
class SearchTool(Protocol):
|
| 11 |
+
@property
|
| 12 |
+
def name(self) -> str: ...
|
| 13 |
+
|
| 14 |
+
async def search(
|
| 15 |
+
self,
|
| 16 |
+
query: str,
|
| 17 |
+
max_results: int = 10
|
| 18 |
+
) -> list[Evidence]: ...
|
| 19 |
+
```
|
| 20 |
+
|
| 21 |
+
## PubMedTool
|
| 22 |
+
|
| 23 |
+
**Module**: `src.tools.pubmed`
|
| 24 |
+
|
| 25 |
+
**Purpose**: Search peer-reviewed biomedical literature from PubMed.
|
| 26 |
+
|
| 27 |
+
### Properties
|
| 28 |
+
|
| 29 |
+
#### `name`
|
| 30 |
+
|
| 31 |
+
```python
|
| 32 |
+
@property
|
| 33 |
+
def name(self) -> str
|
| 34 |
+
```
|
| 35 |
+
|
| 36 |
+
Returns tool name: `"pubmed"`
|
| 37 |
+
|
| 38 |
+
### Methods
|
| 39 |
+
|
| 40 |
+
#### `search`
|
| 41 |
+
|
| 42 |
+
```python
|
| 43 |
+
async def search(
|
| 44 |
+
self,
|
| 45 |
+
query: str,
|
| 46 |
+
max_results: int = 10
|
| 47 |
+
) -> list[Evidence]
|
| 48 |
+
```
|
| 49 |
+
|
| 50 |
+
Searches PubMed for articles.
|
| 51 |
+
|
| 52 |
+
**Parameters**:
|
| 53 |
+
- `query`: Search query string
|
| 54 |
+
- `max_results`: Maximum number of results to return (default: 10)
|
| 55 |
+
|
| 56 |
+
**Returns**: List of `Evidence` objects with PubMed articles.
|
| 57 |
+
|
| 58 |
+
**Raises**:
|
| 59 |
+
- `SearchError`: If search fails
|
| 60 |
+
- `RateLimitError`: If rate limit is exceeded
|
| 61 |
+
|
| 62 |
+
## ClinicalTrialsTool
|
| 63 |
+
|
| 64 |
+
**Module**: `src.tools.clinicaltrials`
|
| 65 |
+
|
| 66 |
+
**Purpose**: Search ClinicalTrials.gov for interventional studies.
|
| 67 |
+
|
| 68 |
+
### Properties
|
| 69 |
+
|
| 70 |
+
#### `name`
|
| 71 |
+
|
| 72 |
+
```python
|
| 73 |
+
@property
|
| 74 |
+
def name(self) -> str
|
| 75 |
+
```
|
| 76 |
+
|
| 77 |
+
Returns tool name: `"clinicaltrials"`
|
| 78 |
+
|
| 79 |
+
### Methods
|
| 80 |
+
|
| 81 |
+
#### `search`
|
| 82 |
+
|
| 83 |
+
```python
|
| 84 |
+
async def search(
|
| 85 |
+
self,
|
| 86 |
+
query: str,
|
| 87 |
+
max_results: int = 10
|
| 88 |
+
) -> list[Evidence]
|
| 89 |
+
```
|
| 90 |
+
|
| 91 |
+
Searches ClinicalTrials.gov for trials.
|
| 92 |
+
|
| 93 |
+
**Parameters**:
|
| 94 |
+
- `query`: Search query string
|
| 95 |
+
- `max_results`: Maximum number of results to return (default: 10)
|
| 96 |
+
|
| 97 |
+
**Returns**: List of `Evidence` objects with clinical trials.
|
| 98 |
+
|
| 99 |
+
**Note**: Only returns interventional studies with status: COMPLETED, ACTIVE_NOT_RECRUITING, RECRUITING, ENROLLING_BY_INVITATION
|
| 100 |
+
|
| 101 |
+
**Raises**:
|
| 102 |
+
- `SearchError`: If search fails
|
| 103 |
+
|
| 104 |
+
## EuropePMCTool
|
| 105 |
+
|
| 106 |
+
**Module**: `src.tools.europepmc`
|
| 107 |
+
|
| 108 |
+
**Purpose**: Search Europe PMC for preprints and peer-reviewed articles.
|
| 109 |
+
|
| 110 |
+
### Properties
|
| 111 |
+
|
| 112 |
+
#### `name`
|
| 113 |
+
|
| 114 |
+
```python
|
| 115 |
+
@property
|
| 116 |
+
def name(self) -> str
|
| 117 |
+
```
|
| 118 |
+
|
| 119 |
+
Returns tool name: `"europepmc"`
|
| 120 |
+
|
| 121 |
+
### Methods
|
| 122 |
+
|
| 123 |
+
#### `search`
|
| 124 |
+
|
| 125 |
+
```python
|
| 126 |
+
async def search(
|
| 127 |
+
self,
|
| 128 |
+
query: str,
|
| 129 |
+
max_results: int = 10
|
| 130 |
+
) -> list[Evidence]
|
| 131 |
+
```
|
| 132 |
+
|
| 133 |
+
Searches Europe PMC for articles and preprints.
|
| 134 |
+
|
| 135 |
+
**Parameters**:
|
| 136 |
+
- `query`: Search query string
|
| 137 |
+
- `max_results`: Maximum number of results to return (default: 10)
|
| 138 |
+
|
| 139 |
+
**Returns**: List of `Evidence` objects with articles/preprints.
|
| 140 |
+
|
| 141 |
+
**Note**: Includes both preprints (marked with `[PREPRINT - Not peer-reviewed]`) and peer-reviewed articles.
|
| 142 |
+
|
| 143 |
+
**Raises**:
|
| 144 |
+
- `SearchError`: If search fails
|
| 145 |
+
|
| 146 |
+
## RAGTool
|
| 147 |
+
|
| 148 |
+
**Module**: `src.tools.rag_tool`
|
| 149 |
+
|
| 150 |
+
**Purpose**: Semantic search within collected evidence.
|
| 151 |
+
|
| 152 |
+
### Properties
|
| 153 |
+
|
| 154 |
+
#### `name`
|
| 155 |
+
|
| 156 |
+
```python
|
| 157 |
+
@property
|
| 158 |
+
def name(self) -> str
|
| 159 |
+
```
|
| 160 |
+
|
| 161 |
+
Returns tool name: `"rag"`
|
| 162 |
+
|
| 163 |
+
### Methods
|
| 164 |
+
|
| 165 |
+
#### `search`
|
| 166 |
+
|
| 167 |
+
```python
|
| 168 |
+
async def search(
|
| 169 |
+
self,
|
| 170 |
+
query: str,
|
| 171 |
+
max_results: int = 10
|
| 172 |
+
) -> list[Evidence]
|
| 173 |
+
```
|
| 174 |
+
|
| 175 |
+
Searches collected evidence using semantic similarity.
|
| 176 |
+
|
| 177 |
+
**Parameters**:
|
| 178 |
+
- `query`: Search query string
|
| 179 |
+
- `max_results`: Maximum number of results to return (default: 10)
|
| 180 |
+
|
| 181 |
+
**Returns**: List of `Evidence` objects from collected evidence.
|
| 182 |
+
|
| 183 |
+
**Note**: Requires evidence to be ingested into RAG service first.
|
| 184 |
+
|
| 185 |
+
## SearchHandler
|
| 186 |
+
|
| 187 |
+
**Module**: `src.tools.search_handler`
|
| 188 |
+
|
| 189 |
+
**Purpose**: Orchestrates parallel searches across multiple tools.
|
| 190 |
+
|
| 191 |
+
### Methods
|
| 192 |
+
|
| 193 |
+
#### `search`
|
| 194 |
+
|
| 195 |
+
```python
|
| 196 |
+
async def search(
|
| 197 |
+
self,
|
| 198 |
+
query: str,
|
| 199 |
+
tools: list[SearchTool] | None = None,
|
| 200 |
+
max_results_per_tool: int = 10
|
| 201 |
+
) -> SearchResult
|
| 202 |
+
```
|
| 203 |
+
|
| 204 |
+
Searches multiple tools in parallel.
|
| 205 |
+
|
| 206 |
+
**Parameters**:
|
| 207 |
+
- `query`: Search query string
|
| 208 |
+
- `tools`: List of tools to use (default: all available tools)
|
| 209 |
+
- `max_results_per_tool`: Maximum results per tool (default: 10)
|
| 210 |
+
|
| 211 |
+
**Returns**: `SearchResult` with:
|
| 212 |
+
- `evidence`: Aggregated list of evidence
|
| 213 |
+
- `tool_results`: Results per tool
|
| 214 |
+
- `total_count`: Total number of results
|
| 215 |
+
|
| 216 |
+
**Note**: Uses `asyncio.gather()` for parallel execution. Handles tool failures gracefully.
|
| 217 |
+
|
| 218 |
+
## See Also
|
| 219 |
+
|
| 220 |
+
- [Architecture - Tools](../architecture/tools.md) - Architecture overview
|
| 221 |
+
- [Models API](models.md) - Data models used by tools
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
|
docs/architecture/agents.md
ADDED
|
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Agents Architecture
|
| 2 |
+
|
| 3 |
+
DeepCritical uses Pydantic AI agents for all AI-powered operations. All agents follow a consistent pattern and use structured output types.
|
| 4 |
+
|
| 5 |
+
## Agent Pattern
|
| 6 |
+
|
| 7 |
+
All agents use the Pydantic AI `Agent` class with the following structure:
|
| 8 |
+
|
| 9 |
+
- **System Prompt**: Module-level constant with date injection
|
| 10 |
+
- **Agent Class**: `__init__(model: Any | None = None)`
|
| 11 |
+
- **Main Method**: Async method (e.g., `async def evaluate()`, `async def write_report()`)
|
| 12 |
+
- **Factory Function**: `def create_agent_name(model: Any | None = None) -> AgentName`
|
| 13 |
+
|
| 14 |
+
## Model Initialization
|
| 15 |
+
|
| 16 |
+
Agents use `get_model()` from `src/agent_factory/judges.py` if no model is provided. This supports:
|
| 17 |
+
|
| 18 |
+
- OpenAI models
|
| 19 |
+
- Anthropic models
|
| 20 |
+
- HuggingFace Inference API models
|
| 21 |
+
|
| 22 |
+
The model selection is based on the configured `LLM_PROVIDER` in settings.
|
| 23 |
+
|
| 24 |
+
## Error Handling
|
| 25 |
+
|
| 26 |
+
Agents return fallback values on failure rather than raising exceptions:
|
| 27 |
+
|
| 28 |
+
- `KnowledgeGapOutput(research_complete=False, outstanding_gaps=[...])`
|
| 29 |
+
- Empty strings for text outputs
|
| 30 |
+
- Default structured outputs
|
| 31 |
+
|
| 32 |
+
All errors are logged with context using structlog.
|
| 33 |
+
|
| 34 |
+
## Input Validation
|
| 35 |
+
|
| 36 |
+
All agents validate inputs:
|
| 37 |
+
|
| 38 |
+
- Check that queries/inputs are not empty
|
| 39 |
+
- Truncate very long inputs with warnings
|
| 40 |
+
- Handle None values gracefully
|
| 41 |
+
|
| 42 |
+
## Output Types
|
| 43 |
+
|
| 44 |
+
Agents use structured output types from `src/utils/models.py`:
|
| 45 |
+
|
| 46 |
+
- `KnowledgeGapOutput`: Research completeness evaluation
|
| 47 |
+
- `AgentSelectionPlan`: Tool selection plan
|
| 48 |
+
- `ReportDraft`: Long-form report structure
|
| 49 |
+
- `ParsedQuery`: Query parsing and mode detection
|
| 50 |
+
|
| 51 |
+
For text output (writer agents), agents return `str` directly.
|
| 52 |
+
|
| 53 |
+
## Agent Types
|
| 54 |
+
|
| 55 |
+
### Knowledge Gap Agent
|
| 56 |
+
|
| 57 |
+
**File**: `src/agents/knowledge_gap.py`
|
| 58 |
+
|
| 59 |
+
**Purpose**: Evaluates research state and identifies knowledge gaps.
|
| 60 |
+
|
| 61 |
+
**Output**: `KnowledgeGapOutput` with:
|
| 62 |
+
- `research_complete`: Boolean indicating if research is complete
|
| 63 |
+
- `outstanding_gaps`: List of remaining knowledge gaps
|
| 64 |
+
|
| 65 |
+
**Methods**:
|
| 66 |
+
- `async def evaluate(query, background_context, conversation_history, iteration, time_elapsed_minutes, max_time_minutes) -> KnowledgeGapOutput`
|
| 67 |
+
|
| 68 |
+
### Tool Selector Agent
|
| 69 |
+
|
| 70 |
+
**File**: `src/agents/tool_selector.py`
|
| 71 |
+
|
| 72 |
+
**Purpose**: Selects appropriate tools for addressing knowledge gaps.
|
| 73 |
+
|
| 74 |
+
**Output**: `AgentSelectionPlan` with list of `AgentTask` objects.
|
| 75 |
+
|
| 76 |
+
**Available Agents**:
|
| 77 |
+
- `WebSearchAgent`: General web search for fresh information
|
| 78 |
+
- `SiteCrawlerAgent`: Research specific entities/companies
|
| 79 |
+
- `RAGAgent`: Semantic search within collected evidence
|
| 80 |
+
|
| 81 |
+
### Writer Agent
|
| 82 |
+
|
| 83 |
+
**File**: `src/agents/writer.py`
|
| 84 |
+
|
| 85 |
+
**Purpose**: Generates final reports from research findings.
|
| 86 |
+
|
| 87 |
+
**Output**: Markdown string with numbered citations.
|
| 88 |
+
|
| 89 |
+
**Methods**:
|
| 90 |
+
- `async def write_report(query, findings, output_length, output_instructions) -> str`
|
| 91 |
+
|
| 92 |
+
**Features**:
|
| 93 |
+
- Validates inputs
|
| 94 |
+
- Truncates very long findings (max 50000 chars) with warning
|
| 95 |
+
- Retry logic for transient failures (3 retries)
|
| 96 |
+
- Citation validation before returning
|
| 97 |
+
|
| 98 |
+
### Long Writer Agent
|
| 99 |
+
|
| 100 |
+
**File**: `src/agents/long_writer.py`
|
| 101 |
+
|
| 102 |
+
**Purpose**: Long-form report generation with section-by-section writing.
|
| 103 |
+
|
| 104 |
+
**Input/Output**: Uses `ReportDraft` models.
|
| 105 |
+
|
| 106 |
+
**Methods**:
|
| 107 |
+
- `async def write_next_section(query, draft, section_title, section_content) -> LongWriterOutput`
|
| 108 |
+
- `async def write_report(query, report_title, report_draft) -> str`
|
| 109 |
+
|
| 110 |
+
**Features**:
|
| 111 |
+
- Writes sections iteratively
|
| 112 |
+
- Aggregates references across sections
|
| 113 |
+
- Reformats section headings and references
|
| 114 |
+
- Deduplicates and renumbers references
|
| 115 |
+
|
| 116 |
+
### Proofreader Agent
|
| 117 |
+
|
| 118 |
+
**File**: `src/agents/proofreader.py`
|
| 119 |
+
|
| 120 |
+
**Purpose**: Proofreads and polishes report drafts.
|
| 121 |
+
|
| 122 |
+
**Input**: `ReportDraft`
|
| 123 |
+
**Output**: Polished markdown string
|
| 124 |
+
|
| 125 |
+
**Methods**:
|
| 126 |
+
- `async def proofread(query, report_title, report_draft) -> str`
|
| 127 |
+
|
| 128 |
+
**Features**:
|
| 129 |
+
- Removes duplicate content across sections
|
| 130 |
+
- Adds executive summary if multiple sections
|
| 131 |
+
- Preserves all references and citations
|
| 132 |
+
- Improves flow and readability
|
| 133 |
+
|
| 134 |
+
### Thinking Agent
|
| 135 |
+
|
| 136 |
+
**File**: `src/agents/thinking.py`
|
| 137 |
+
|
| 138 |
+
**Purpose**: Generates observations from conversation history.
|
| 139 |
+
|
| 140 |
+
**Output**: Observation string
|
| 141 |
+
|
| 142 |
+
**Methods**:
|
| 143 |
+
- `async def generate_observations(query, background_context, conversation_history) -> str`
|
| 144 |
+
|
| 145 |
+
### Input Parser Agent
|
| 146 |
+
|
| 147 |
+
**File**: `src/agents/input_parser.py`
|
| 148 |
+
|
| 149 |
+
**Purpose**: Parses and improves user queries, detects research mode.
|
| 150 |
+
|
| 151 |
+
**Output**: `ParsedQuery` with:
|
| 152 |
+
- `original_query`: Original query string
|
| 153 |
+
- `improved_query`: Refined query string
|
| 154 |
+
- `research_mode`: "iterative" or "deep"
|
| 155 |
+
- `key_entities`: List of key entities
|
| 156 |
+
- `research_questions`: List of research questions
|
| 157 |
+
|
| 158 |
+
## Factory Functions
|
| 159 |
+
|
| 160 |
+
All agents have factory functions in `src/agent_factory/agents.py`:
|
| 161 |
+
|
| 162 |
+
```python
|
| 163 |
+
def create_knowledge_gap_agent(model: Any | None = None) -> KnowledgeGapAgent
|
| 164 |
+
def create_tool_selector_agent(model: Any | None = None) -> ToolSelectorAgent
|
| 165 |
+
def create_writer_agent(model: Any | None = None) -> WriterAgent
|
| 166 |
+
# ... etc
|
| 167 |
+
```
|
| 168 |
+
|
| 169 |
+
Factory functions:
|
| 170 |
+
- Use `get_model()` if no model provided
|
| 171 |
+
- Raise `ConfigurationError` if creation fails
|
| 172 |
+
- Log agent creation
|
| 173 |
+
|
| 174 |
+
## See Also
|
| 175 |
+
|
| 176 |
+
- [Orchestrators](orchestrators.md) - How agents are orchestrated
|
| 177 |
+
- [API Reference - Agents](../api/agents.md) - API documentation
|
| 178 |
+
- [Contributing - Code Style](../contributing/code-style.md) - Development guidelines
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
|
docs/architecture/middleware.md
ADDED
|
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Middleware Architecture
|
| 2 |
+
|
| 3 |
+
DeepCritical uses middleware for state management, budget tracking, and workflow coordination.
|
| 4 |
+
|
| 5 |
+
## State Management
|
| 6 |
+
|
| 7 |
+
### WorkflowState
|
| 8 |
+
|
| 9 |
+
**File**: `src/middleware/state_machine.py`
|
| 10 |
+
|
| 11 |
+
**Purpose**: Thread-safe state management for research workflows
|
| 12 |
+
|
| 13 |
+
**Implementation**: Uses `ContextVar` for thread-safe isolation
|
| 14 |
+
|
| 15 |
+
**State Components**:
|
| 16 |
+
- `evidence: list[Evidence]`: Collected evidence from searches
|
| 17 |
+
- `conversation: Conversation`: Iteration history (gaps, tool calls, findings, thoughts)
|
| 18 |
+
- `embedding_service: Any`: Embedding service for semantic search
|
| 19 |
+
|
| 20 |
+
**Methods**:
|
| 21 |
+
- `add_evidence(evidence: Evidence)`: Adds evidence with URL-based deduplication
|
| 22 |
+
- `async search_related(query: str, top_k: int = 5) -> list[Evidence]`: Semantic search
|
| 23 |
+
|
| 24 |
+
**Initialization**:
|
| 25 |
+
```python
|
| 26 |
+
from src.middleware.state_machine import init_workflow_state
|
| 27 |
+
|
| 28 |
+
init_workflow_state(embedding_service)
|
| 29 |
+
```
|
| 30 |
+
|
| 31 |
+
**Access**:
|
| 32 |
+
```python
|
| 33 |
+
from src.middleware.state_machine import get_workflow_state
|
| 34 |
+
|
| 35 |
+
state = get_workflow_state() # Auto-initializes if missing
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
## Workflow Manager
|
| 39 |
+
|
| 40 |
+
**File**: `src/middleware/workflow_manager.py`
|
| 41 |
+
|
| 42 |
+
**Purpose**: Coordinates parallel research loops
|
| 43 |
+
|
| 44 |
+
**Methods**:
|
| 45 |
+
- `add_loop(loop: ResearchLoop)`: Add a research loop to manage
|
| 46 |
+
- `async run_loops_parallel() -> list[ResearchLoop]`: Run all loops in parallel
|
| 47 |
+
- `update_loop_status(loop_id: str, status: str)`: Update loop status
|
| 48 |
+
- `sync_loop_evidence_to_state()`: Synchronize evidence from loops to global state
|
| 49 |
+
|
| 50 |
+
**Features**:
|
| 51 |
+
- Uses `asyncio.gather()` for parallel execution
|
| 52 |
+
- Handles errors per loop (doesn't fail all if one fails)
|
| 53 |
+
- Tracks loop status: `pending`, `running`, `completed`, `failed`, `cancelled`
|
| 54 |
+
- Evidence deduplication across parallel loops
|
| 55 |
+
|
| 56 |
+
**Usage**:
|
| 57 |
+
```python
|
| 58 |
+
from src.middleware.workflow_manager import WorkflowManager
|
| 59 |
+
|
| 60 |
+
manager = WorkflowManager()
|
| 61 |
+
manager.add_loop(loop1)
|
| 62 |
+
manager.add_loop(loop2)
|
| 63 |
+
completed_loops = await manager.run_loops_parallel()
|
| 64 |
+
```
|
| 65 |
+
|
| 66 |
+
## Budget Tracker
|
| 67 |
+
|
| 68 |
+
**File**: `src/middleware/budget_tracker.py`
|
| 69 |
+
|
| 70 |
+
**Purpose**: Tracks and enforces resource limits
|
| 71 |
+
|
| 72 |
+
**Budget Components**:
|
| 73 |
+
- **Tokens**: LLM token usage
|
| 74 |
+
- **Time**: Elapsed time in seconds
|
| 75 |
+
- **Iterations**: Number of iterations
|
| 76 |
+
|
| 77 |
+
**Methods**:
|
| 78 |
+
- `create_budget(token_limit, time_limit_seconds, iterations_limit) -> BudgetStatus`
|
| 79 |
+
- `add_tokens(tokens: int)`: Add token usage
|
| 80 |
+
- `start_timer()`: Start time tracking
|
| 81 |
+
- `update_timer()`: Update elapsed time
|
| 82 |
+
- `increment_iteration()`: Increment iteration count
|
| 83 |
+
- `check_budget() -> BudgetStatus`: Check current budget status
|
| 84 |
+
- `can_continue() -> bool`: Check if research can continue
|
| 85 |
+
|
| 86 |
+
**Token Estimation**:
|
| 87 |
+
- `estimate_tokens(text: str) -> int`: ~4 chars per token
|
| 88 |
+
- `estimate_llm_call_tokens(prompt: str, response: str) -> int`: Estimate LLM call tokens
|
| 89 |
+
|
| 90 |
+
**Usage**:
|
| 91 |
+
```python
|
| 92 |
+
from src.middleware.budget_tracker import BudgetTracker
|
| 93 |
+
|
| 94 |
+
tracker = BudgetTracker()
|
| 95 |
+
budget = tracker.create_budget(
|
| 96 |
+
token_limit=100000,
|
| 97 |
+
time_limit_seconds=600,
|
| 98 |
+
iterations_limit=10
|
| 99 |
+
)
|
| 100 |
+
tracker.start_timer()
|
| 101 |
+
# ... research operations ...
|
| 102 |
+
if not tracker.can_continue():
|
| 103 |
+
# Budget exceeded, stop research
|
| 104 |
+
pass
|
| 105 |
+
```
|
| 106 |
+
|
| 107 |
+
## Models
|
| 108 |
+
|
| 109 |
+
All middleware models are defined in `src/utils/models.py`:
|
| 110 |
+
|
| 111 |
+
- `IterationData`: Data for a single iteration
|
| 112 |
+
- `Conversation`: Conversation history with iterations
|
| 113 |
+
- `ResearchLoop`: Research loop state and configuration
|
| 114 |
+
- `BudgetStatus`: Current budget status
|
| 115 |
+
|
| 116 |
+
## Thread Safety
|
| 117 |
+
|
| 118 |
+
All middleware components use `ContextVar` for thread-safe isolation:
|
| 119 |
+
|
| 120 |
+
- Each request/thread has its own workflow state
|
| 121 |
+
- No global mutable state
|
| 122 |
+
- Safe for concurrent requests
|
| 123 |
+
|
| 124 |
+
## See Also
|
| 125 |
+
|
| 126 |
+
- [Orchestrators](orchestrators.md) - How middleware is used in orchestration
|
| 127 |
+
- [API Reference - Orchestrators](../api/orchestrators.md) - API documentation
|
| 128 |
+
- [Contributing - Code Style](../contributing/code-style.md) - Development guidelines
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
|
docs/architecture/services.md
ADDED
|
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Services Architecture
|
| 2 |
+
|
| 3 |
+
DeepCritical provides several services for embeddings, RAG, and statistical analysis.
|
| 4 |
+
|
| 5 |
+
## Embedding Service
|
| 6 |
+
|
| 7 |
+
**File**: `src/services/embeddings.py`
|
| 8 |
+
|
| 9 |
+
**Purpose**: Local sentence-transformers for semantic search and deduplication
|
| 10 |
+
|
| 11 |
+
**Features**:
|
| 12 |
+
- **No API Key Required**: Uses local sentence-transformers models
|
| 13 |
+
- **Async-Safe**: All operations use `run_in_executor()` to avoid blocking
|
| 14 |
+
- **ChromaDB Storage**: Vector storage for embeddings
|
| 15 |
+
- **Deduplication**: 0.85 similarity threshold (85% similarity = duplicate)
|
| 16 |
+
|
| 17 |
+
**Model**: Configurable via `settings.local_embedding_model` (default: `all-MiniLM-L6-v2`)
|
| 18 |
+
|
| 19 |
+
**Methods**:
|
| 20 |
+
- `async def embed(text: str) -> list[float]`: Generate embeddings
|
| 21 |
+
- `async def embed_batch(texts: list[str]) -> list[list[float]]`: Batch embedding
|
| 22 |
+
- `async def similarity(text1: str, text2: str) -> float`: Calculate similarity
|
| 23 |
+
- `async def find_duplicates(texts: list[str], threshold: float = 0.85) -> list[tuple[int, int]]`: Find duplicates
|
| 24 |
+
|
| 25 |
+
**Usage**:
|
| 26 |
+
```python
|
| 27 |
+
from src.services.embeddings import get_embedding_service
|
| 28 |
+
|
| 29 |
+
service = get_embedding_service()
|
| 30 |
+
embedding = await service.embed("text to embed")
|
| 31 |
+
```
|
| 32 |
+
|
| 33 |
+
## LlamaIndex RAG Service
|
| 34 |
+
|
| 35 |
+
**File**: `src/services/rag.py`
|
| 36 |
+
|
| 37 |
+
**Purpose**: Retrieval-Augmented Generation using LlamaIndex
|
| 38 |
+
|
| 39 |
+
**Features**:
|
| 40 |
+
- **OpenAI Embeddings**: Requires `OPENAI_API_KEY`
|
| 41 |
+
- **ChromaDB Storage**: Vector database for document storage
|
| 42 |
+
- **Metadata Preservation**: Preserves source, title, URL, date, authors
|
| 43 |
+
- **Lazy Initialization**: Graceful fallback if OpenAI key not available
|
| 44 |
+
|
| 45 |
+
**Methods**:
|
| 46 |
+
- `async def ingest_evidence(evidence: list[Evidence]) -> None`: Ingest evidence into RAG
|
| 47 |
+
- `async def retrieve(query: str, top_k: int = 5) -> list[Document]`: Retrieve relevant documents
|
| 48 |
+
- `async def query(query: str, top_k: int = 5) -> str`: Query with RAG
|
| 49 |
+
|
| 50 |
+
**Usage**:
|
| 51 |
+
```python
|
| 52 |
+
from src.services.rag import get_rag_service
|
| 53 |
+
|
| 54 |
+
service = get_rag_service()
|
| 55 |
+
if service:
|
| 56 |
+
documents = await service.retrieve("query", top_k=5)
|
| 57 |
+
```
|
| 58 |
+
|
| 59 |
+
## Statistical Analyzer
|
| 60 |
+
|
| 61 |
+
**File**: `src/services/statistical_analyzer.py`
|
| 62 |
+
|
| 63 |
+
**Purpose**: Secure execution of AI-generated statistical code
|
| 64 |
+
|
| 65 |
+
**Features**:
|
| 66 |
+
- **Modal Sandbox**: Secure, isolated execution environment
|
| 67 |
+
- **Code Generation**: Generates Python code via LLM
|
| 68 |
+
- **Library Pinning**: Version-pinned libraries in `SANDBOX_LIBRARIES`
|
| 69 |
+
- **Network Isolation**: `block_network=True` by default
|
| 70 |
+
|
| 71 |
+
**Libraries Available**:
|
| 72 |
+
- pandas, numpy, scipy
|
| 73 |
+
- matplotlib, scikit-learn
|
| 74 |
+
- statsmodels
|
| 75 |
+
|
| 76 |
+
**Output**: `AnalysisResult` with:
|
| 77 |
+
- `verdict`: SUPPORTED, REFUTED, or INCONCLUSIVE
|
| 78 |
+
- `code`: Generated analysis code
|
| 79 |
+
- `output`: Execution output
|
| 80 |
+
- `error`: Error message if execution failed
|
| 81 |
+
|
| 82 |
+
**Usage**:
|
| 83 |
+
```python
|
| 84 |
+
from src.services.statistical_analyzer import StatisticalAnalyzer
|
| 85 |
+
|
| 86 |
+
analyzer = StatisticalAnalyzer()
|
| 87 |
+
result = await analyzer.analyze(
|
| 88 |
+
hypothesis="Metformin reduces cancer risk",
|
| 89 |
+
evidence=evidence_list
|
| 90 |
+
)
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
## Singleton Pattern
|
| 94 |
+
|
| 95 |
+
All services use the singleton pattern with `@lru_cache(maxsize=1)`:
|
| 96 |
+
|
| 97 |
+
```python
|
| 98 |
+
@lru_cache(maxsize=1)
|
| 99 |
+
def get_embedding_service() -> EmbeddingService:
|
| 100 |
+
return EmbeddingService()
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
This ensures:
|
| 104 |
+
- Single instance per process
|
| 105 |
+
- Lazy initialization
|
| 106 |
+
- No dependencies required at import time
|
| 107 |
+
|
| 108 |
+
## Service Availability
|
| 109 |
+
|
| 110 |
+
Services check availability before use:
|
| 111 |
+
|
| 112 |
+
```python
|
| 113 |
+
from src.utils.config import settings
|
| 114 |
+
|
| 115 |
+
if settings.modal_available:
|
| 116 |
+
# Use Modal sandbox
|
| 117 |
+
pass
|
| 118 |
+
|
| 119 |
+
if settings.has_openai_key:
|
| 120 |
+
# Use OpenAI embeddings for RAG
|
| 121 |
+
pass
|
| 122 |
+
```
|
| 123 |
+
|
| 124 |
+
## See Also
|
| 125 |
+
|
| 126 |
+
- [Tools](tools.md) - How services are used by search tools
|
| 127 |
+
- [API Reference - Services](../api/services.md) - API documentation
|
| 128 |
+
- [Configuration](../configuration/index.md) - Service configuration
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
|
docs/architecture/tools.md
ADDED
|
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Tools Architecture
|
| 2 |
+
|
| 3 |
+
DeepCritical implements a protocol-based search tool system for retrieving evidence from multiple sources.
|
| 4 |
+
|
| 5 |
+
## SearchTool Protocol
|
| 6 |
+
|
| 7 |
+
All tools implement the `SearchTool` protocol from `src/tools/base.py`:
|
| 8 |
+
|
| 9 |
+
```python
|
| 10 |
+
class SearchTool(Protocol):
|
| 11 |
+
@property
|
| 12 |
+
def name(self) -> str: ...
|
| 13 |
+
|
| 14 |
+
async def search(
|
| 15 |
+
self,
|
| 16 |
+
query: str,
|
| 17 |
+
max_results: int = 10
|
| 18 |
+
) -> list[Evidence]: ...
|
| 19 |
+
```
|
| 20 |
+
|
| 21 |
+
## Rate Limiting
|
| 22 |
+
|
| 23 |
+
All tools use the `@retry` decorator from tenacity:
|
| 24 |
+
|
| 25 |
+
```python
|
| 26 |
+
@retry(
|
| 27 |
+
stop=stop_after_attempt(3),
|
| 28 |
+
wait=wait_exponential(...)
|
| 29 |
+
)
|
| 30 |
+
async def search(self, query: str, max_results: int = 10) -> list[Evidence]:
|
| 31 |
+
# Implementation
|
| 32 |
+
```
|
| 33 |
+
|
| 34 |
+
Tools with API rate limits implement `_rate_limit()` method and use shared rate limiters from `src/tools/rate_limiter.py`.
|
| 35 |
+
|
| 36 |
+
## Error Handling
|
| 37 |
+
|
| 38 |
+
Tools raise custom exceptions:
|
| 39 |
+
|
| 40 |
+
- `SearchError`: General search failures
|
| 41 |
+
- `RateLimitError`: Rate limit exceeded
|
| 42 |
+
|
| 43 |
+
Tools handle HTTP errors (429, 500, timeout) and return empty lists on non-critical errors (with warning logs).
|
| 44 |
+
|
| 45 |
+
## Query Preprocessing
|
| 46 |
+
|
| 47 |
+
Tools use `preprocess_query()` from `src/tools/query_utils.py` to:
|
| 48 |
+
|
| 49 |
+
- Remove noise from queries
|
| 50 |
+
- Expand synonyms
|
| 51 |
+
- Normalize query format
|
| 52 |
+
|
| 53 |
+
## Evidence Conversion
|
| 54 |
+
|
| 55 |
+
All tools convert API responses to `Evidence` objects with:
|
| 56 |
+
|
| 57 |
+
- `Citation`: Title, URL, date, authors
|
| 58 |
+
- `content`: Evidence text
|
| 59 |
+
- `relevance_score`: 0.0-1.0 relevance score
|
| 60 |
+
- `metadata`: Additional metadata
|
| 61 |
+
|
| 62 |
+
Missing fields are handled gracefully with defaults.
|
| 63 |
+
|
| 64 |
+
## Tool Implementations
|
| 65 |
+
|
| 66 |
+
### PubMed Tool
|
| 67 |
+
|
| 68 |
+
**File**: `src/tools/pubmed.py`
|
| 69 |
+
|
| 70 |
+
**API**: NCBI E-utilities (ESearch → EFetch)
|
| 71 |
+
|
| 72 |
+
**Rate Limiting**:
|
| 73 |
+
- 0.34s between requests (3 req/sec without API key)
|
| 74 |
+
- 0.1s between requests (10 req/sec with NCBI API key)
|
| 75 |
+
|
| 76 |
+
**Features**:
|
| 77 |
+
- XML parsing with `xmltodict`
|
| 78 |
+
- Handles single vs. multiple articles
|
| 79 |
+
- Query preprocessing
|
| 80 |
+
- Evidence conversion with metadata extraction
|
| 81 |
+
|
| 82 |
+
### ClinicalTrials Tool
|
| 83 |
+
|
| 84 |
+
**File**: `src/tools/clinicaltrials.py`
|
| 85 |
+
|
| 86 |
+
**API**: ClinicalTrials.gov API v2
|
| 87 |
+
|
| 88 |
+
**Important**: Uses `requests` library (NOT httpx) because WAF blocks httpx TLS fingerprint.
|
| 89 |
+
|
| 90 |
+
**Execution**: Runs in thread pool: `await asyncio.to_thread(requests.get, ...)`
|
| 91 |
+
|
| 92 |
+
**Filtering**:
|
| 93 |
+
- Only interventional studies
|
| 94 |
+
- Status: `COMPLETED`, `ACTIVE_NOT_RECRUITING`, `RECRUITING`, `ENROLLING_BY_INVITATION`
|
| 95 |
+
|
| 96 |
+
**Features**:
|
| 97 |
+
- Parses nested JSON structure
|
| 98 |
+
- Extracts trial metadata
|
| 99 |
+
- Evidence conversion
|
| 100 |
+
|
| 101 |
+
### Europe PMC Tool
|
| 102 |
+
|
| 103 |
+
**File**: `src/tools/europepmc.py`
|
| 104 |
+
|
| 105 |
+
**API**: Europe PMC REST API
|
| 106 |
+
|
| 107 |
+
**Features**:
|
| 108 |
+
- Handles preprint markers: `[PREPRINT - Not peer-reviewed]`
|
| 109 |
+
- Builds URLs from DOI or PMID
|
| 110 |
+
- Checks `pubTypeList` for preprint detection
|
| 111 |
+
- Includes both preprints and peer-reviewed articles
|
| 112 |
+
|
| 113 |
+
### RAG Tool
|
| 114 |
+
|
| 115 |
+
**File**: `src/tools/rag_tool.py`
|
| 116 |
+
|
| 117 |
+
**Purpose**: Semantic search within collected evidence
|
| 118 |
+
|
| 119 |
+
**Implementation**: Wraps `LlamaIndexRAGService`
|
| 120 |
+
|
| 121 |
+
**Features**:
|
| 122 |
+
- Returns Evidence from RAG results
|
| 123 |
+
- Handles evidence ingestion
|
| 124 |
+
- Semantic similarity search
|
| 125 |
+
- Metadata preservation
|
| 126 |
+
|
| 127 |
+
### Search Handler
|
| 128 |
+
|
| 129 |
+
**File**: `src/tools/search_handler.py`
|
| 130 |
+
|
| 131 |
+
**Purpose**: Orchestrates parallel searches across multiple tools
|
| 132 |
+
|
| 133 |
+
**Features**:
|
| 134 |
+
- Uses `asyncio.gather()` with `return_exceptions=True`
|
| 135 |
+
- Aggregates results into `SearchResult`
|
| 136 |
+
- Handles tool failures gracefully
|
| 137 |
+
- Deduplicates results by URL
|
| 138 |
+
|
| 139 |
+
## Tool Registration
|
| 140 |
+
|
| 141 |
+
Tools are registered in the search handler:
|
| 142 |
+
|
| 143 |
+
```python
|
| 144 |
+
from src.tools.pubmed import PubMedTool
|
| 145 |
+
from src.tools.clinicaltrials import ClinicalTrialsTool
|
| 146 |
+
from src.tools.europepmc import EuropePMCTool
|
| 147 |
+
|
| 148 |
+
search_handler = SearchHandler(
|
| 149 |
+
tools=[
|
| 150 |
+
PubMedTool(),
|
| 151 |
+
ClinicalTrialsTool(),
|
| 152 |
+
EuropePMCTool(),
|
| 153 |
+
]
|
| 154 |
+
)
|
| 155 |
+
```
|
| 156 |
+
|
| 157 |
+
## See Also
|
| 158 |
+
|
| 159 |
+
- [Services](services.md) - RAG and embedding services
|
| 160 |
+
- [API Reference - Tools](../api/tools.md) - API documentation
|
| 161 |
+
- [Contributing - Implementation Patterns](../contributing/implementation-patterns.md) - Development guidelines
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
|
docs/contributing/code-quality.md
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Code Quality & Documentation
|
| 2 |
+
|
| 3 |
+
This document outlines code quality standards and documentation requirements.
|
| 4 |
+
|
| 5 |
+
## Linting
|
| 6 |
+
|
| 7 |
+
- Ruff with 100-char line length
|
| 8 |
+
- Ignore rules documented in `pyproject.toml`:
|
| 9 |
+
- `PLR0913`: Too many arguments (agents need many params)
|
| 10 |
+
- `PLR0912`: Too many branches (complex orchestrator logic)
|
| 11 |
+
- `PLR0911`: Too many return statements (complex agent logic)
|
| 12 |
+
- `PLR2004`: Magic values (statistical constants)
|
| 13 |
+
- `PLW0603`: Global statement (singleton pattern)
|
| 14 |
+
- `PLC0415`: Lazy imports for optional dependencies
|
| 15 |
+
|
| 16 |
+
## Type Checking
|
| 17 |
+
|
| 18 |
+
- `mypy --strict` compliance
|
| 19 |
+
- `ignore_missing_imports = true` (for optional dependencies)
|
| 20 |
+
- Exclude: `reference_repos/`, `examples/`
|
| 21 |
+
- All functions must have complete type annotations
|
| 22 |
+
|
| 23 |
+
## Pre-commit
|
| 24 |
+
|
| 25 |
+
- Run `make check` before committing
|
| 26 |
+
- Must pass: lint + typecheck + test-cov
|
| 27 |
+
- Pre-commit hooks installed via `make install`
|
| 28 |
+
|
| 29 |
+
## Documentation
|
| 30 |
+
|
| 31 |
+
### Docstrings
|
| 32 |
+
|
| 33 |
+
- Google-style docstrings for all public functions
|
| 34 |
+
- Include Args, Returns, Raises sections
|
| 35 |
+
- Use type hints in docstrings only if needed for clarity
|
| 36 |
+
|
| 37 |
+
Example:
|
| 38 |
+
|
| 39 |
+
```python
|
| 40 |
+
async def search(self, query: str, max_results: int = 10) -> list[Evidence]:
|
| 41 |
+
"""Search PubMed and return evidence.
|
| 42 |
+
|
| 43 |
+
Args:
|
| 44 |
+
query: The search query string
|
| 45 |
+
max_results: Maximum number of results to return
|
| 46 |
+
|
| 47 |
+
Returns:
|
| 48 |
+
List of Evidence objects
|
| 49 |
+
|
| 50 |
+
Raises:
|
| 51 |
+
SearchError: If the search fails
|
| 52 |
+
RateLimitError: If we hit rate limits
|
| 53 |
+
"""
|
| 54 |
+
```
|
| 55 |
+
|
| 56 |
+
### Code Comments
|
| 57 |
+
|
| 58 |
+
- Explain WHY, not WHAT
|
| 59 |
+
- Document non-obvious patterns (e.g., why `requests` not `httpx` for ClinicalTrials)
|
| 60 |
+
- Mark critical sections: `# CRITICAL: ...`
|
| 61 |
+
- Document rate limiting rationale
|
| 62 |
+
- Explain async patterns when non-obvious
|
| 63 |
+
|
| 64 |
+
## See Also
|
| 65 |
+
|
| 66 |
+
- [Code Style](code-style.md) - Code style guidelines
|
| 67 |
+
- [Testing](testing.md) - Testing guidelines
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
|
docs/contributing/code-style.md
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Code Style & Conventions
|
| 2 |
+
|
| 3 |
+
This document outlines the code style and conventions for DeepCritical.
|
| 4 |
+
|
| 5 |
+
## Type Safety
|
| 6 |
+
|
| 7 |
+
- **ALWAYS** use type hints for all function parameters and return types
|
| 8 |
+
- Use `mypy --strict` compliance (no `Any` unless absolutely necessary)
|
| 9 |
+
- Use `TYPE_CHECKING` imports for circular dependencies:
|
| 10 |
+
|
| 11 |
+
```python
|
| 12 |
+
from typing import TYPE_CHECKING
|
| 13 |
+
if TYPE_CHECKING:
|
| 14 |
+
from src.services.embeddings import EmbeddingService
|
| 15 |
+
```
|
| 16 |
+
|
| 17 |
+
## Pydantic Models
|
| 18 |
+
|
| 19 |
+
- All data exchange uses Pydantic models (`src/utils/models.py`)
|
| 20 |
+
- Models are frozen (`model_config = {"frozen": True}`) for immutability
|
| 21 |
+
- Use `Field()` with descriptions for all model fields
|
| 22 |
+
- Validate with `ge=`, `le=`, `min_length=`, `max_length=` constraints
|
| 23 |
+
|
| 24 |
+
## Async Patterns
|
| 25 |
+
|
| 26 |
+
- **ALL** I/O operations must be async (`async def`, `await`)
|
| 27 |
+
- Use `asyncio.gather()` for parallel operations
|
| 28 |
+
- CPU-bound work (embeddings, parsing) must use `run_in_executor()`:
|
| 29 |
+
|
| 30 |
+
```python
|
| 31 |
+
loop = asyncio.get_running_loop()
|
| 32 |
+
result = await loop.run_in_executor(None, cpu_bound_function, args)
|
| 33 |
+
```
|
| 34 |
+
|
| 35 |
+
- Never block the event loop with synchronous I/O
|
| 36 |
+
|
| 37 |
+
## Common Pitfalls
|
| 38 |
+
|
| 39 |
+
1. **Blocking the event loop**: Never use sync I/O in async functions
|
| 40 |
+
2. **Missing type hints**: All functions must have complete type annotations
|
| 41 |
+
3. **Global mutable state**: Use ContextVar or pass via parameters
|
| 42 |
+
4. **Import errors**: Lazy-load optional dependencies (magentic, modal, embeddings)
|
| 43 |
+
|
| 44 |
+
## See Also
|
| 45 |
+
|
| 46 |
+
- [Error Handling](error-handling.md) - Error handling guidelines
|
| 47 |
+
- [Implementation Patterns](implementation-patterns.md) - Common patterns
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
|
docs/contributing/error-handling.md
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Error Handling & Logging
|
| 2 |
+
|
| 3 |
+
This document outlines error handling and logging conventions for DeepCritical.
|
| 4 |
+
|
| 5 |
+
## Exception Hierarchy
|
| 6 |
+
|
| 7 |
+
Use custom exception hierarchy (`src/utils/exceptions.py`):
|
| 8 |
+
|
| 9 |
+
- `DeepCriticalError` (base)
|
| 10 |
+
- `SearchError` → `RateLimitError`
|
| 11 |
+
- `JudgeError`
|
| 12 |
+
- `ConfigurationError`
|
| 13 |
+
|
| 14 |
+
## Error Handling Rules
|
| 15 |
+
|
| 16 |
+
- Always chain exceptions: `raise SearchError(...) from e`
|
| 17 |
+
- Log errors with context using `structlog`:
|
| 18 |
+
|
| 19 |
+
```python
|
| 20 |
+
logger.error("Operation failed", error=str(e), context=value)
|
| 21 |
+
```
|
| 22 |
+
|
| 23 |
+
- Never silently swallow exceptions
|
| 24 |
+
- Provide actionable error messages
|
| 25 |
+
|
| 26 |
+
## Logging
|
| 27 |
+
|
| 28 |
+
- Use `structlog` for all logging (NOT `print` or `logging`)
|
| 29 |
+
- Import: `import structlog; logger = structlog.get_logger()`
|
| 30 |
+
- Log with structured data: `logger.info("event", key=value)`
|
| 31 |
+
- Use appropriate levels: DEBUG, INFO, WARNING, ERROR
|
| 32 |
+
|
| 33 |
+
## Logging Examples
|
| 34 |
+
|
| 35 |
+
```python
|
| 36 |
+
logger.info("Starting search", query=query, tools=[t.name for t in tools])
|
| 37 |
+
logger.warning("Search tool failed", tool=tool.name, error=str(result))
|
| 38 |
+
logger.error("Assessment failed", error=str(e))
|
| 39 |
+
```
|
| 40 |
+
|
| 41 |
+
## Error Chaining
|
| 42 |
+
|
| 43 |
+
Always preserve exception context:
|
| 44 |
+
|
| 45 |
+
```python
|
| 46 |
+
try:
|
| 47 |
+
result = await api_call()
|
| 48 |
+
except httpx.HTTPError as e:
|
| 49 |
+
raise SearchError(f"API call failed: {e}") from e
|
| 50 |
+
```
|
| 51 |
+
|
| 52 |
+
## See Also
|
| 53 |
+
|
| 54 |
+
- [Code Style](code-style.md) - Code style guidelines
|
| 55 |
+
- [Testing](testing.md) - Testing guidelines
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
|
docs/contributing/implementation-patterns.md
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Implementation Patterns
|
| 2 |
+
|
| 3 |
+
This document outlines common implementation patterns used in DeepCritical.
|
| 4 |
+
|
| 5 |
+
## Search Tools
|
| 6 |
+
|
| 7 |
+
All tools implement `SearchTool` protocol (`src/tools/base.py`):
|
| 8 |
+
|
| 9 |
+
- Must have `name` property
|
| 10 |
+
- Must implement `async def search(query, max_results) -> list[Evidence]`
|
| 11 |
+
- Use `@retry` decorator from tenacity for resilience
|
| 12 |
+
- Rate limiting: Implement `_rate_limit()` for APIs with limits (e.g., PubMed)
|
| 13 |
+
- Error handling: Raise `SearchError` or `RateLimitError` on failures
|
| 14 |
+
|
| 15 |
+
Example pattern:
|
| 16 |
+
|
| 17 |
+
```python
|
| 18 |
+
class MySearchTool:
|
| 19 |
+
@property
|
| 20 |
+
def name(self) -> str:
|
| 21 |
+
return "mytool"
|
| 22 |
+
|
| 23 |
+
@retry(stop=stop_after_attempt(3), wait=wait_exponential(...))
|
| 24 |
+
async def search(self, query: str, max_results: int = 10) -> list[Evidence]:
|
| 25 |
+
# Implementation
|
| 26 |
+
return evidence_list
|
| 27 |
+
```
|
| 28 |
+
|
| 29 |
+
## Judge Handlers
|
| 30 |
+
|
| 31 |
+
- Implement `JudgeHandlerProtocol` (`async def assess(question, evidence) -> JudgeAssessment`)
|
| 32 |
+
- Use pydantic-ai `Agent` with `output_type=JudgeAssessment`
|
| 33 |
+
- System prompts in `src/prompts/judge.py`
|
| 34 |
+
- Support fallback handlers: `MockJudgeHandler`, `HFInferenceJudgeHandler`
|
| 35 |
+
- Always return valid `JudgeAssessment` (never raise exceptions)
|
| 36 |
+
|
| 37 |
+
## Agent Factory Pattern
|
| 38 |
+
|
| 39 |
+
- Use factory functions for creating agents (`src/agent_factory/`)
|
| 40 |
+
- Lazy initialization for optional dependencies (e.g., embeddings, Modal)
|
| 41 |
+
- Check requirements before initialization:
|
| 42 |
+
|
| 43 |
+
```python
|
| 44 |
+
def check_magentic_requirements() -> None:
|
| 45 |
+
if not settings.has_openai_key:
|
| 46 |
+
raise ConfigurationError("Magentic requires OpenAI")
|
| 47 |
+
```
|
| 48 |
+
|
| 49 |
+
## State Management
|
| 50 |
+
|
| 51 |
+
- **Magentic Mode**: Use `ContextVar` for thread-safe state (`src/agents/state.py`)
|
| 52 |
+
- **Simple Mode**: Pass state via function parameters
|
| 53 |
+
- Never use global mutable state (except singletons via `@lru_cache`)
|
| 54 |
+
|
| 55 |
+
## Singleton Pattern
|
| 56 |
+
|
| 57 |
+
Use `@lru_cache(maxsize=1)` for singletons:
|
| 58 |
+
|
| 59 |
+
```python
|
| 60 |
+
@lru_cache(maxsize=1)
|
| 61 |
+
def get_embedding_service() -> EmbeddingService:
|
| 62 |
+
return EmbeddingService()
|
| 63 |
+
```
|
| 64 |
+
|
| 65 |
+
- Lazy initialization to avoid requiring dependencies at import time
|
| 66 |
+
|
| 67 |
+
## See Also
|
| 68 |
+
|
| 69 |
+
- [Code Style](code-style.md) - Code style guidelines
|
| 70 |
+
- [Error Handling](error-handling.md) - Error handling guidelines
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
|
docs/contributing/index.md
ADDED
|
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Contributing to DeepCritical
|
| 2 |
+
|
| 3 |
+
Thank you for your interest in contributing to DeepCritical! This guide will help you get started.
|
| 4 |
+
|
| 5 |
+
## Git Workflow
|
| 6 |
+
|
| 7 |
+
- `main`: Production-ready (GitHub)
|
| 8 |
+
- `dev`: Development integration (GitHub)
|
| 9 |
+
- Use feature branches: `yourname-dev`
|
| 10 |
+
- **NEVER** push directly to `main` or `dev` on HuggingFace
|
| 11 |
+
- GitHub is source of truth; HuggingFace is for deployment
|
| 12 |
+
|
| 13 |
+
## Development Commands
|
| 14 |
+
|
| 15 |
+
```bash
|
| 16 |
+
make install # Install dependencies + pre-commit
|
| 17 |
+
make check # Lint + typecheck + test (MUST PASS)
|
| 18 |
+
make test # Run unit tests
|
| 19 |
+
make lint # Run ruff
|
| 20 |
+
make format # Format with ruff
|
| 21 |
+
make typecheck # Run mypy
|
| 22 |
+
make test-cov # Test with coverage
|
| 23 |
+
```
|
| 24 |
+
|
| 25 |
+
## Getting Started
|
| 26 |
+
|
| 27 |
+
1. **Fork the repository** on GitHub
|
| 28 |
+
2. **Clone your fork**:
|
| 29 |
+
```bash
|
| 30 |
+
git clone https://github.com/yourusername/GradioDemo.git
|
| 31 |
+
cd GradioDemo
|
| 32 |
+
```
|
| 33 |
+
3. **Install dependencies**:
|
| 34 |
+
```bash
|
| 35 |
+
make install
|
| 36 |
+
```
|
| 37 |
+
4. **Create a feature branch**:
|
| 38 |
+
```bash
|
| 39 |
+
git checkout -b yourname-feature-name
|
| 40 |
+
```
|
| 41 |
+
5. **Make your changes** following the guidelines below
|
| 42 |
+
6. **Run checks**:
|
| 43 |
+
```bash
|
| 44 |
+
make check
|
| 45 |
+
```
|
| 46 |
+
7. **Commit and push**:
|
| 47 |
+
```bash
|
| 48 |
+
git commit -m "Description of changes"
|
| 49 |
+
git push origin yourname-feature-name
|
| 50 |
+
```
|
| 51 |
+
8. **Create a pull request** on GitHub
|
| 52 |
+
|
| 53 |
+
## Development Guidelines
|
| 54 |
+
|
| 55 |
+
### Code Style
|
| 56 |
+
|
| 57 |
+
- Follow [Code Style Guidelines](code-style.md)
|
| 58 |
+
- All code must pass `mypy --strict`
|
| 59 |
+
- Use `ruff` for linting and formatting
|
| 60 |
+
- Line length: 100 characters
|
| 61 |
+
|
| 62 |
+
### Error Handling
|
| 63 |
+
|
| 64 |
+
- Follow [Error Handling Guidelines](error-handling.md)
|
| 65 |
+
- Always chain exceptions: `raise SearchError(...) from e`
|
| 66 |
+
- Use structured logging with `structlog`
|
| 67 |
+
- Never silently swallow exceptions
|
| 68 |
+
|
| 69 |
+
### Testing
|
| 70 |
+
|
| 71 |
+
- Follow [Testing Guidelines](testing.md)
|
| 72 |
+
- Write tests before implementation (TDD)
|
| 73 |
+
- Aim for >80% coverage on critical paths
|
| 74 |
+
- Use markers: `unit`, `integration`, `slow`
|
| 75 |
+
|
| 76 |
+
### Implementation Patterns
|
| 77 |
+
|
| 78 |
+
- Follow [Implementation Patterns](implementation-patterns.md)
|
| 79 |
+
- Use factory functions for agent/tool creation
|
| 80 |
+
- Implement protocols for extensibility
|
| 81 |
+
- Use singleton pattern with `@lru_cache(maxsize=1)`
|
| 82 |
+
|
| 83 |
+
### Prompt Engineering
|
| 84 |
+
|
| 85 |
+
- Follow [Prompt Engineering Guidelines](prompt-engineering.md)
|
| 86 |
+
- Always validate citations
|
| 87 |
+
- Use diverse evidence selection
|
| 88 |
+
- Never trust LLM-generated citations without validation
|
| 89 |
+
|
| 90 |
+
### Code Quality
|
| 91 |
+
|
| 92 |
+
- Follow [Code Quality Guidelines](code-quality.md)
|
| 93 |
+
- Google-style docstrings for all public functions
|
| 94 |
+
- Explain WHY, not WHAT in comments
|
| 95 |
+
- Mark critical sections: `# CRITICAL: ...`
|
| 96 |
+
|
| 97 |
+
## MCP Integration
|
| 98 |
+
|
| 99 |
+
### MCP Tools
|
| 100 |
+
|
| 101 |
+
- Functions in `src/mcp_tools.py` for Claude Desktop
|
| 102 |
+
- Full type hints required
|
| 103 |
+
- Google-style docstrings with Args/Returns sections
|
| 104 |
+
- Formatted string returns (markdown)
|
| 105 |
+
|
| 106 |
+
### Gradio MCP Server
|
| 107 |
+
|
| 108 |
+
- Enable with `mcp_server=True` in `demo.launch()`
|
| 109 |
+
- Endpoint: `/gradio_api/mcp/`
|
| 110 |
+
- Use `ssr_mode=False` to fix hydration issues in HF Spaces
|
| 111 |
+
|
| 112 |
+
## Common Pitfalls
|
| 113 |
+
|
| 114 |
+
1. **Blocking the event loop**: Never use sync I/O in async functions
|
| 115 |
+
2. **Missing type hints**: All functions must have complete type annotations
|
| 116 |
+
3. **Hallucinated citations**: Always validate references
|
| 117 |
+
4. **Global mutable state**: Use ContextVar or pass via parameters
|
| 118 |
+
5. **Import errors**: Lazy-load optional dependencies (magentic, modal, embeddings)
|
| 119 |
+
6. **Rate limiting**: Always implement for external APIs
|
| 120 |
+
7. **Error chaining**: Always use `from e` when raising exceptions
|
| 121 |
+
|
| 122 |
+
## Key Principles
|
| 123 |
+
|
| 124 |
+
1. **Type Safety First**: All code must pass `mypy --strict`
|
| 125 |
+
2. **Async Everything**: All I/O must be async
|
| 126 |
+
3. **Test-Driven**: Write tests before implementation
|
| 127 |
+
4. **No Hallucinations**: Validate all citations
|
| 128 |
+
5. **Graceful Degradation**: Support free tier (HF Inference) when no API keys
|
| 129 |
+
6. **Lazy Loading**: Don't require optional dependencies at import time
|
| 130 |
+
7. **Structured Logging**: Use structlog, never print()
|
| 131 |
+
8. **Error Chaining**: Always preserve exception context
|
| 132 |
+
|
| 133 |
+
## Pull Request Process
|
| 134 |
+
|
| 135 |
+
1. Ensure all checks pass: `make check`
|
| 136 |
+
2. Update documentation if needed
|
| 137 |
+
3. Add tests for new features
|
| 138 |
+
4. Update CHANGELOG if applicable
|
| 139 |
+
5. Request review from maintainers
|
| 140 |
+
6. Address review feedback
|
| 141 |
+
7. Wait for approval before merging
|
| 142 |
+
|
| 143 |
+
## Questions?
|
| 144 |
+
|
| 145 |
+
- Open an issue on GitHub
|
| 146 |
+
- Check existing documentation
|
| 147 |
+
- Review code examples in the codebase
|
| 148 |
+
|
| 149 |
+
Thank you for contributing to DeepCritical!
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
|
docs/contributing/prompt-engineering.md
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Prompt Engineering & Citation Validation
|
| 2 |
+
|
| 3 |
+
This document outlines prompt engineering guidelines and citation validation rules.
|
| 4 |
+
|
| 5 |
+
## Judge Prompts
|
| 6 |
+
|
| 7 |
+
- System prompt in `src/prompts/judge.py`
|
| 8 |
+
- Format evidence with truncation (1500 chars per item)
|
| 9 |
+
- Handle empty evidence case separately
|
| 10 |
+
- Always request structured JSON output
|
| 11 |
+
- Use `format_user_prompt()` and `format_empty_evidence_prompt()` helpers
|
| 12 |
+
|
| 13 |
+
## Hypothesis Prompts
|
| 14 |
+
|
| 15 |
+
- Use diverse evidence selection (MMR algorithm)
|
| 16 |
+
- Sentence-aware truncation (`truncate_at_sentence()`)
|
| 17 |
+
- Format: Drug → Target → Pathway → Effect
|
| 18 |
+
- System prompt emphasizes mechanistic reasoning
|
| 19 |
+
- Use `format_hypothesis_prompt()` with embeddings for diversity
|
| 20 |
+
|
| 21 |
+
## Report Prompts
|
| 22 |
+
|
| 23 |
+
- Include full citation details for validation
|
| 24 |
+
- Use diverse evidence selection (n=20)
|
| 25 |
+
- **CRITICAL**: Emphasize citation validation rules
|
| 26 |
+
- Format hypotheses with support/contradiction counts
|
| 27 |
+
- System prompt includes explicit JSON structure requirements
|
| 28 |
+
|
| 29 |
+
## Citation Validation
|
| 30 |
+
|
| 31 |
+
- **ALWAYS** validate references before returning reports
|
| 32 |
+
- Use `validate_references()` from `src/utils/citation_validator.py`
|
| 33 |
+
- Remove hallucinated citations (URLs not in evidence)
|
| 34 |
+
- Log warnings for removed citations
|
| 35 |
+
- Never trust LLM-generated citations without validation
|
| 36 |
+
|
| 37 |
+
## Citation Validation Rules
|
| 38 |
+
|
| 39 |
+
1. Every reference URL must EXACTLY match a provided evidence URL
|
| 40 |
+
2. Do NOT invent, fabricate, or hallucinate any references
|
| 41 |
+
3. Do NOT modify paper titles, authors, dates, or URLs
|
| 42 |
+
4. If unsure about a citation, OMIT it rather than guess
|
| 43 |
+
5. Copy URLs exactly as provided - do not create similar-looking URLs
|
| 44 |
+
|
| 45 |
+
## Evidence Selection
|
| 46 |
+
|
| 47 |
+
- Use `select_diverse_evidence()` for MMR-based selection
|
| 48 |
+
- Balance relevance vs diversity (lambda=0.7 default)
|
| 49 |
+
- Sentence-aware truncation preserves meaning
|
| 50 |
+
- Limit evidence per prompt to avoid context overflow
|
| 51 |
+
|
| 52 |
+
## See Also
|
| 53 |
+
|
| 54 |
+
- [Code Quality](code-quality.md) - Code quality guidelines
|
| 55 |
+
- [Error Handling](error-handling.md) - Error handling guidelines
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
|
docs/contributing/testing.md
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Testing Requirements
|
| 2 |
+
|
| 3 |
+
This document outlines testing requirements and guidelines for DeepCritical.
|
| 4 |
+
|
| 5 |
+
## Test Structure
|
| 6 |
+
|
| 7 |
+
- Unit tests in `tests/unit/` (mocked, fast)
|
| 8 |
+
- Integration tests in `tests/integration/` (real APIs, marked `@pytest.mark.integration`)
|
| 9 |
+
- Use markers: `unit`, `integration`, `slow`
|
| 10 |
+
|
| 11 |
+
## Mocking
|
| 12 |
+
|
| 13 |
+
- Use `respx` for httpx mocking
|
| 14 |
+
- Use `pytest-mock` for general mocking
|
| 15 |
+
- Mock LLM calls in unit tests (use `MockJudgeHandler`)
|
| 16 |
+
- Fixtures in `tests/conftest.py`: `mock_httpx_client`, `mock_llm_response`
|
| 17 |
+
|
| 18 |
+
## TDD Workflow
|
| 19 |
+
|
| 20 |
+
1. Write failing test in `tests/unit/`
|
| 21 |
+
2. Implement in `src/`
|
| 22 |
+
3. Ensure test passes
|
| 23 |
+
4. Run `make check` (lint + typecheck + test)
|
| 24 |
+
|
| 25 |
+
## Test Examples
|
| 26 |
+
|
| 27 |
+
```python
|
| 28 |
+
@pytest.mark.unit
|
| 29 |
+
async def test_pubmed_search(mock_httpx_client):
|
| 30 |
+
tool = PubMedTool()
|
| 31 |
+
results = await tool.search("metformin", max_results=5)
|
| 32 |
+
assert len(results) > 0
|
| 33 |
+
assert all(isinstance(r, Evidence) for r in results)
|
| 34 |
+
|
| 35 |
+
@pytest.mark.integration
|
| 36 |
+
async def test_real_pubmed_search():
|
| 37 |
+
tool = PubMedTool()
|
| 38 |
+
results = await tool.search("metformin", max_results=3)
|
| 39 |
+
assert len(results) <= 3
|
| 40 |
+
```
|
| 41 |
+
|
| 42 |
+
## Test Coverage
|
| 43 |
+
|
| 44 |
+
- Run `make test-cov` for coverage report
|
| 45 |
+
- Aim for >80% coverage on critical paths
|
| 46 |
+
- Exclude: `__init__.py`, `TYPE_CHECKING` blocks
|
| 47 |
+
|
| 48 |
+
## See Also
|
| 49 |
+
|
| 50 |
+
- [Code Style](code-style.md) - Code style guidelines
|
| 51 |
+
- [Implementation Patterns](implementation-patterns.md) - Common patterns
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
|
docs/getting-started/examples.md
ADDED
|
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Examples
|
| 2 |
+
|
| 3 |
+
This page provides examples of using DeepCritical for various research tasks.
|
| 4 |
+
|
| 5 |
+
## Basic Research Query
|
| 6 |
+
|
| 7 |
+
### Example 1: Drug Information
|
| 8 |
+
|
| 9 |
+
**Query**:
|
| 10 |
+
```
|
| 11 |
+
What are the latest treatments for Alzheimer's disease?
|
| 12 |
+
```
|
| 13 |
+
|
| 14 |
+
**What DeepCritical Does**:
|
| 15 |
+
1. Searches PubMed for recent papers
|
| 16 |
+
2. Searches ClinicalTrials.gov for active trials
|
| 17 |
+
3. Evaluates evidence quality
|
| 18 |
+
4. Synthesizes findings into a comprehensive report
|
| 19 |
+
|
| 20 |
+
### Example 2: Clinical Trial Search
|
| 21 |
+
|
| 22 |
+
**Query**:
|
| 23 |
+
```
|
| 24 |
+
What clinical trials are investigating metformin for cancer prevention?
|
| 25 |
+
```
|
| 26 |
+
|
| 27 |
+
**What DeepCritical Does**:
|
| 28 |
+
1. Searches ClinicalTrials.gov for relevant trials
|
| 29 |
+
2. Searches PubMed for supporting literature
|
| 30 |
+
3. Provides trial details and status
|
| 31 |
+
4. Summarizes findings
|
| 32 |
+
|
| 33 |
+
## Advanced Research Queries
|
| 34 |
+
|
| 35 |
+
### Example 3: Comprehensive Review
|
| 36 |
+
|
| 37 |
+
**Query**:
|
| 38 |
+
```
|
| 39 |
+
Review the evidence for using metformin as an anti-aging intervention,
|
| 40 |
+
including clinical trials, mechanisms of action, and safety profile.
|
| 41 |
+
```
|
| 42 |
+
|
| 43 |
+
**What DeepCritical Does**:
|
| 44 |
+
1. Uses deep research mode (multi-section)
|
| 45 |
+
2. Searches multiple sources in parallel
|
| 46 |
+
3. Generates sections on:
|
| 47 |
+
- Clinical trials
|
| 48 |
+
- Mechanisms of action
|
| 49 |
+
- Safety profile
|
| 50 |
+
4. Synthesizes comprehensive report
|
| 51 |
+
|
| 52 |
+
### Example 4: Hypothesis Testing
|
| 53 |
+
|
| 54 |
+
**Query**:
|
| 55 |
+
```
|
| 56 |
+
Test the hypothesis that regular exercise reduces Alzheimer's disease risk.
|
| 57 |
+
```
|
| 58 |
+
|
| 59 |
+
**What DeepCritical Does**:
|
| 60 |
+
1. Generates testable hypotheses
|
| 61 |
+
2. Searches for supporting/contradicting evidence
|
| 62 |
+
3. Performs statistical analysis (if Modal configured)
|
| 63 |
+
4. Provides verdict: SUPPORTED, REFUTED, or INCONCLUSIVE
|
| 64 |
+
|
| 65 |
+
## MCP Tool Examples
|
| 66 |
+
|
| 67 |
+
### Using search_pubmed
|
| 68 |
+
|
| 69 |
+
```
|
| 70 |
+
Search PubMed for "CRISPR gene editing cancer therapy"
|
| 71 |
+
```
|
| 72 |
+
|
| 73 |
+
### Using search_clinical_trials
|
| 74 |
+
|
| 75 |
+
```
|
| 76 |
+
Find active clinical trials for "diabetes type 2 treatment"
|
| 77 |
+
```
|
| 78 |
+
|
| 79 |
+
### Using search_all
|
| 80 |
+
|
| 81 |
+
```
|
| 82 |
+
Search all sources for "COVID-19 vaccine side effects"
|
| 83 |
+
```
|
| 84 |
+
|
| 85 |
+
### Using analyze_hypothesis
|
| 86 |
+
|
| 87 |
+
```
|
| 88 |
+
Analyze whether vitamin D supplementation reduces COVID-19 severity
|
| 89 |
+
```
|
| 90 |
+
|
| 91 |
+
## Code Examples
|
| 92 |
+
|
| 93 |
+
### Python API Usage
|
| 94 |
+
|
| 95 |
+
```python
|
| 96 |
+
from src.orchestrator_factory import create_orchestrator
|
| 97 |
+
from src.tools.search_handler import SearchHandler
|
| 98 |
+
from src.agent_factory.judges import create_judge_handler
|
| 99 |
+
|
| 100 |
+
# Create orchestrator
|
| 101 |
+
search_handler = SearchHandler()
|
| 102 |
+
judge_handler = create_judge_handler()
|
| 103 |
+
orchestrator = create_orchestrator(
|
| 104 |
+
search_handler=search_handler,
|
| 105 |
+
judge_handler=judge_handler,
|
| 106 |
+
config={},
|
| 107 |
+
mode="advanced"
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
# Run research query
|
| 111 |
+
query = "What are the latest treatments for Alzheimer's disease?"
|
| 112 |
+
async for event in orchestrator.run(query):
|
| 113 |
+
print(f"Event: {event.type} - {event.data}")
|
| 114 |
+
```
|
| 115 |
+
|
| 116 |
+
### Gradio UI Integration
|
| 117 |
+
|
| 118 |
+
```python
|
| 119 |
+
import gradio as gr
|
| 120 |
+
from src.app import create_research_interface
|
| 121 |
+
|
| 122 |
+
# Create interface
|
| 123 |
+
interface = create_research_interface()
|
| 124 |
+
|
| 125 |
+
# Launch
|
| 126 |
+
interface.launch(server_name="0.0.0.0", server_port=7860)
|
| 127 |
+
```
|
| 128 |
+
|
| 129 |
+
## Research Patterns
|
| 130 |
+
|
| 131 |
+
### Iterative Research
|
| 132 |
+
|
| 133 |
+
Single-loop research with search-judge-synthesize cycles:
|
| 134 |
+
|
| 135 |
+
```python
|
| 136 |
+
from src.orchestrator.research_flow import IterativeResearchFlow
|
| 137 |
+
|
| 138 |
+
flow = IterativeResearchFlow(
|
| 139 |
+
search_handler=search_handler,
|
| 140 |
+
judge_handler=judge_handler,
|
| 141 |
+
use_graph=False
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
async for event in flow.run(query):
|
| 145 |
+
# Handle events
|
| 146 |
+
pass
|
| 147 |
+
```
|
| 148 |
+
|
| 149 |
+
### Deep Research
|
| 150 |
+
|
| 151 |
+
Multi-section parallel research:
|
| 152 |
+
|
| 153 |
+
```python
|
| 154 |
+
from src.orchestrator.research_flow import DeepResearchFlow
|
| 155 |
+
|
| 156 |
+
flow = DeepResearchFlow(
|
| 157 |
+
search_handler=search_handler,
|
| 158 |
+
judge_handler=judge_handler,
|
| 159 |
+
use_graph=True
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
async for event in flow.run(query):
|
| 163 |
+
# Handle events
|
| 164 |
+
pass
|
| 165 |
+
```
|
| 166 |
+
|
| 167 |
+
## Configuration Examples
|
| 168 |
+
|
| 169 |
+
### Basic Configuration
|
| 170 |
+
|
| 171 |
+
```bash
|
| 172 |
+
# .env file
|
| 173 |
+
LLM_PROVIDER=openai
|
| 174 |
+
OPENAI_API_KEY=your_key_here
|
| 175 |
+
MAX_ITERATIONS=10
|
| 176 |
+
```
|
| 177 |
+
|
| 178 |
+
### Advanced Configuration
|
| 179 |
+
|
| 180 |
+
```bash
|
| 181 |
+
# .env file
|
| 182 |
+
LLM_PROVIDER=anthropic
|
| 183 |
+
ANTHROPIC_API_KEY=your_key_here
|
| 184 |
+
EMBEDDING_PROVIDER=local
|
| 185 |
+
WEB_SEARCH_PROVIDER=duckduckgo
|
| 186 |
+
MAX_ITERATIONS=20
|
| 187 |
+
DEFAULT_TOKEN_LIMIT=200000
|
| 188 |
+
USE_GRAPH_EXECUTION=true
|
| 189 |
+
```
|
| 190 |
+
|
| 191 |
+
## Next Steps
|
| 192 |
+
|
| 193 |
+
- Read the [Configuration Guide](../configuration/index.md) for all options
|
| 194 |
+
- Explore the [Architecture Documentation](../architecture/graph-orchestration.md)
|
| 195 |
+
- Check out the [API Reference](../api/agents.md) for programmatic usage
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
|
docs/getting-started/installation.md
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Installation
|
| 2 |
+
|
| 3 |
+
This guide will help you install and set up DeepCritical on your system.
|
| 4 |
+
|
| 5 |
+
## Prerequisites
|
| 6 |
+
|
| 7 |
+
- Python 3.11 or higher
|
| 8 |
+
- `uv` package manager (recommended) or `pip`
|
| 9 |
+
- At least one LLM API key (OpenAI, Anthropic, or HuggingFace)
|
| 10 |
+
|
| 11 |
+
## Installation Steps
|
| 12 |
+
|
| 13 |
+
### 1. Install uv (Recommended)
|
| 14 |
+
|
| 15 |
+
`uv` is a fast Python package installer and resolver. Install it with:
|
| 16 |
+
|
| 17 |
+
```bash
|
| 18 |
+
pip install uv
|
| 19 |
+
```
|
| 20 |
+
|
| 21 |
+
### 2. Clone the Repository
|
| 22 |
+
|
| 23 |
+
```bash
|
| 24 |
+
git clone https://github.com/DeepCritical/GradioDemo.git
|
| 25 |
+
cd GradioDemo
|
| 26 |
+
```
|
| 27 |
+
|
| 28 |
+
### 3. Install Dependencies
|
| 29 |
+
|
| 30 |
+
Using `uv` (recommended):
|
| 31 |
+
|
| 32 |
+
```bash
|
| 33 |
+
uv sync
|
| 34 |
+
```
|
| 35 |
+
|
| 36 |
+
Using `pip`:
|
| 37 |
+
|
| 38 |
+
```bash
|
| 39 |
+
pip install -e .
|
| 40 |
+
```
|
| 41 |
+
|
| 42 |
+
### 4. Install Optional Dependencies
|
| 43 |
+
|
| 44 |
+
For embeddings support (local sentence-transformers):
|
| 45 |
+
|
| 46 |
+
```bash
|
| 47 |
+
uv sync --extra embeddings
|
| 48 |
+
```
|
| 49 |
+
|
| 50 |
+
For Modal sandbox execution:
|
| 51 |
+
|
| 52 |
+
```bash
|
| 53 |
+
uv sync --extra modal
|
| 54 |
+
```
|
| 55 |
+
|
| 56 |
+
For Magentic orchestration:
|
| 57 |
+
|
| 58 |
+
```bash
|
| 59 |
+
uv sync --extra magentic
|
| 60 |
+
```
|
| 61 |
+
|
| 62 |
+
Install all extras:
|
| 63 |
+
|
| 64 |
+
```bash
|
| 65 |
+
uv sync --all-extras
|
| 66 |
+
```
|
| 67 |
+
|
| 68 |
+
### 5. Configure Environment Variables
|
| 69 |
+
|
| 70 |
+
Create a `.env` file in the project root:
|
| 71 |
+
|
| 72 |
+
```bash
|
| 73 |
+
# Required: At least one LLM provider
|
| 74 |
+
LLM_PROVIDER=openai # or "anthropic" or "huggingface"
|
| 75 |
+
OPENAI_API_KEY=your_openai_api_key_here
|
| 76 |
+
|
| 77 |
+
# Optional: Other services
|
| 78 |
+
NCBI_API_KEY=your_ncbi_api_key_here # For higher PubMed rate limits
|
| 79 |
+
MODAL_TOKEN_ID=your_modal_token_id
|
| 80 |
+
MODAL_TOKEN_SECRET=your_modal_token_secret
|
| 81 |
+
```
|
| 82 |
+
|
| 83 |
+
See the [Configuration Guide](../configuration/index.md) for all available options.
|
| 84 |
+
|
| 85 |
+
### 6. Verify Installation
|
| 86 |
+
|
| 87 |
+
Run the application:
|
| 88 |
+
|
| 89 |
+
```bash
|
| 90 |
+
uv run gradio run src/app.py
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
Open your browser to `http://localhost:7860` to verify the installation.
|
| 94 |
+
|
| 95 |
+
## Development Setup
|
| 96 |
+
|
| 97 |
+
For development, install dev dependencies:
|
| 98 |
+
|
| 99 |
+
```bash
|
| 100 |
+
uv sync --all-extras --dev
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
Install pre-commit hooks:
|
| 104 |
+
|
| 105 |
+
```bash
|
| 106 |
+
uv run pre-commit install
|
| 107 |
+
```
|
| 108 |
+
|
| 109 |
+
## Troubleshooting
|
| 110 |
+
|
| 111 |
+
### Common Issues
|
| 112 |
+
|
| 113 |
+
**Import Errors**:
|
| 114 |
+
- Ensure you've installed all required dependencies
|
| 115 |
+
- Check that Python 3.11+ is being used
|
| 116 |
+
|
| 117 |
+
**API Key Errors**:
|
| 118 |
+
- Verify your `.env` file is in the project root
|
| 119 |
+
- Check that API keys are correctly formatted
|
| 120 |
+
- Ensure at least one LLM provider is configured
|
| 121 |
+
|
| 122 |
+
**Module Not Found**:
|
| 123 |
+
- Run `uv sync` or `pip install -e .` again
|
| 124 |
+
- Check that you're in the correct virtual environment
|
| 125 |
+
|
| 126 |
+
**Port Already in Use**:
|
| 127 |
+
- Change the port in `src/app.py` or use environment variable
|
| 128 |
+
- Kill the process using port 7860
|
| 129 |
+
|
| 130 |
+
## Next Steps
|
| 131 |
+
|
| 132 |
+
- Read the [Quick Start Guide](quick-start.md)
|
| 133 |
+
- Learn about [MCP Integration](mcp-integration.md)
|
| 134 |
+
- Explore [Examples](examples.md)
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
|
docs/getting-started/mcp-integration.md
ADDED
|
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# MCP Integration
|
| 2 |
+
|
| 3 |
+
DeepCritical exposes a Model Context Protocol (MCP) server, allowing you to use its search tools directly from Claude Desktop or other MCP clients.
|
| 4 |
+
|
| 5 |
+
## What is MCP?
|
| 6 |
+
|
| 7 |
+
The Model Context Protocol (MCP) is a standard for connecting AI assistants to external tools and data sources. DeepCritical implements an MCP server that exposes its search capabilities as MCP tools.
|
| 8 |
+
|
| 9 |
+
## MCP Server URL
|
| 10 |
+
|
| 11 |
+
When running locally:
|
| 12 |
+
|
| 13 |
+
```
|
| 14 |
+
http://localhost:7860/gradio_api/mcp/
|
| 15 |
+
```
|
| 16 |
+
|
| 17 |
+
## Claude Desktop Configuration
|
| 18 |
+
|
| 19 |
+
### 1. Locate Configuration File
|
| 20 |
+
|
| 21 |
+
**macOS**:
|
| 22 |
+
```
|
| 23 |
+
~/Library/Application Support/Claude/claude_desktop_config.json
|
| 24 |
+
```
|
| 25 |
+
|
| 26 |
+
**Windows**:
|
| 27 |
+
```
|
| 28 |
+
%APPDATA%\Claude\claude_desktop_config.json
|
| 29 |
+
```
|
| 30 |
+
|
| 31 |
+
**Linux**:
|
| 32 |
+
```
|
| 33 |
+
~/.config/Claude/claude_desktop_config.json
|
| 34 |
+
```
|
| 35 |
+
|
| 36 |
+
### 2. Add DeepCritical Server
|
| 37 |
+
|
| 38 |
+
Edit `claude_desktop_config.json` and add:
|
| 39 |
+
|
| 40 |
+
```json
|
| 41 |
+
{
|
| 42 |
+
"mcpServers": {
|
| 43 |
+
"deepcritical": {
|
| 44 |
+
"url": "http://localhost:7860/gradio_api/mcp/"
|
| 45 |
+
}
|
| 46 |
+
}
|
| 47 |
+
}
|
| 48 |
+
```
|
| 49 |
+
|
| 50 |
+
### 3. Restart Claude Desktop
|
| 51 |
+
|
| 52 |
+
Close and restart Claude Desktop for changes to take effect.
|
| 53 |
+
|
| 54 |
+
### 4. Verify Connection
|
| 55 |
+
|
| 56 |
+
In Claude Desktop, you should see DeepCritical tools available:
|
| 57 |
+
- `search_pubmed`
|
| 58 |
+
- `search_clinical_trials`
|
| 59 |
+
- `search_biorxiv`
|
| 60 |
+
- `search_all`
|
| 61 |
+
- `analyze_hypothesis`
|
| 62 |
+
|
| 63 |
+
## Available Tools
|
| 64 |
+
|
| 65 |
+
### search_pubmed
|
| 66 |
+
|
| 67 |
+
Search peer-reviewed biomedical literature from PubMed.
|
| 68 |
+
|
| 69 |
+
**Parameters**:
|
| 70 |
+
- `query` (string): Search query
|
| 71 |
+
- `max_results` (integer, optional): Maximum number of results (default: 10)
|
| 72 |
+
|
| 73 |
+
**Example**:
|
| 74 |
+
```
|
| 75 |
+
Search PubMed for "metformin diabetes"
|
| 76 |
+
```
|
| 77 |
+
|
| 78 |
+
### search_clinical_trials
|
| 79 |
+
|
| 80 |
+
Search ClinicalTrials.gov for interventional studies.
|
| 81 |
+
|
| 82 |
+
**Parameters**:
|
| 83 |
+
- `query` (string): Search query
|
| 84 |
+
- `max_results` (integer, optional): Maximum number of results (default: 10)
|
| 85 |
+
|
| 86 |
+
**Example**:
|
| 87 |
+
```
|
| 88 |
+
Search clinical trials for "Alzheimer's disease treatment"
|
| 89 |
+
```
|
| 90 |
+
|
| 91 |
+
### search_biorxiv
|
| 92 |
+
|
| 93 |
+
Search bioRxiv/medRxiv preprints via Europe PMC.
|
| 94 |
+
|
| 95 |
+
**Parameters**:
|
| 96 |
+
- `query` (string): Search query
|
| 97 |
+
- `max_results` (integer, optional): Maximum number of results (default: 10)
|
| 98 |
+
|
| 99 |
+
**Example**:
|
| 100 |
+
```
|
| 101 |
+
Search bioRxiv for "CRISPR gene editing"
|
| 102 |
+
```
|
| 103 |
+
|
| 104 |
+
### search_all
|
| 105 |
+
|
| 106 |
+
Search all sources simultaneously (PubMed, ClinicalTrials.gov, Europe PMC).
|
| 107 |
+
|
| 108 |
+
**Parameters**:
|
| 109 |
+
- `query` (string): Search query
|
| 110 |
+
- `max_results` (integer, optional): Maximum number of results per source (default: 10)
|
| 111 |
+
|
| 112 |
+
**Example**:
|
| 113 |
+
```
|
| 114 |
+
Search all sources for "COVID-19 vaccine efficacy"
|
| 115 |
+
```
|
| 116 |
+
|
| 117 |
+
### analyze_hypothesis
|
| 118 |
+
|
| 119 |
+
Perform secure statistical analysis using Modal sandboxes.
|
| 120 |
+
|
| 121 |
+
**Parameters**:
|
| 122 |
+
- `hypothesis` (string): Hypothesis to analyze
|
| 123 |
+
- `data` (string, optional): Data description or code
|
| 124 |
+
|
| 125 |
+
**Example**:
|
| 126 |
+
```
|
| 127 |
+
Analyze the hypothesis that metformin reduces cancer risk
|
| 128 |
+
```
|
| 129 |
+
|
| 130 |
+
## Using Tools in Claude Desktop
|
| 131 |
+
|
| 132 |
+
Once configured, you can ask Claude to use DeepCritical tools:
|
| 133 |
+
|
| 134 |
+
```
|
| 135 |
+
Use DeepCritical to search PubMed for recent papers on Alzheimer's disease treatments.
|
| 136 |
+
```
|
| 137 |
+
|
| 138 |
+
Claude will automatically:
|
| 139 |
+
1. Call the appropriate DeepCritical tool
|
| 140 |
+
2. Retrieve results
|
| 141 |
+
3. Use the results in its response
|
| 142 |
+
|
| 143 |
+
## Troubleshooting
|
| 144 |
+
|
| 145 |
+
### Connection Issues
|
| 146 |
+
|
| 147 |
+
**Server Not Found**:
|
| 148 |
+
- Ensure DeepCritical is running (`uv run gradio run src/app.py`)
|
| 149 |
+
- Verify the URL in `claude_desktop_config.json` is correct
|
| 150 |
+
- Check that port 7860 is not blocked by firewall
|
| 151 |
+
|
| 152 |
+
**Tools Not Appearing**:
|
| 153 |
+
- Restart Claude Desktop after configuration changes
|
| 154 |
+
- Check Claude Desktop logs for errors
|
| 155 |
+
- Verify MCP server is accessible at the configured URL
|
| 156 |
+
|
| 157 |
+
### Authentication
|
| 158 |
+
|
| 159 |
+
If DeepCritical requires authentication:
|
| 160 |
+
- Configure API keys in DeepCritical settings
|
| 161 |
+
- Use HuggingFace OAuth login
|
| 162 |
+
- Ensure API keys are valid
|
| 163 |
+
|
| 164 |
+
## Advanced Configuration
|
| 165 |
+
|
| 166 |
+
### Custom Port
|
| 167 |
+
|
| 168 |
+
If running on a different port, update the URL:
|
| 169 |
+
|
| 170 |
+
```json
|
| 171 |
+
{
|
| 172 |
+
"mcpServers": {
|
| 173 |
+
"deepcritical": {
|
| 174 |
+
"url": "http://localhost:8080/gradio_api/mcp/"
|
| 175 |
+
}
|
| 176 |
+
}
|
| 177 |
+
}
|
| 178 |
+
```
|
| 179 |
+
|
| 180 |
+
### Multiple Instances
|
| 181 |
+
|
| 182 |
+
You can configure multiple DeepCritical instances:
|
| 183 |
+
|
| 184 |
+
```json
|
| 185 |
+
{
|
| 186 |
+
"mcpServers": {
|
| 187 |
+
"deepcritical-local": {
|
| 188 |
+
"url": "http://localhost:7860/gradio_api/mcp/"
|
| 189 |
+
},
|
| 190 |
+
"deepcritical-remote": {
|
| 191 |
+
"url": "https://your-server.com/gradio_api/mcp/"
|
| 192 |
+
}
|
| 193 |
+
}
|
| 194 |
+
}
|
| 195 |
+
```
|
| 196 |
+
|
| 197 |
+
## Next Steps
|
| 198 |
+
|
| 199 |
+
- Learn about [Configuration](../configuration/index.md) for advanced settings
|
| 200 |
+
- Explore [Examples](examples.md) for use cases
|
| 201 |
+
- Read the [Architecture Documentation](../architecture/graph-orchestration.md)
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
|
docs/getting-started/quick-start.md
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Quick Start Guide
|
| 2 |
+
|
| 3 |
+
Get up and running with DeepCritical in minutes.
|
| 4 |
+
|
| 5 |
+
## Start the Application
|
| 6 |
+
|
| 7 |
+
```bash
|
| 8 |
+
uv run gradio run src/app.py
|
| 9 |
+
```
|
| 10 |
+
|
| 11 |
+
Open your browser to `http://localhost:7860`.
|
| 12 |
+
|
| 13 |
+
## First Research Query
|
| 14 |
+
|
| 15 |
+
1. **Enter a Research Question**
|
| 16 |
+
|
| 17 |
+
Type your research question in the chat interface, for example:
|
| 18 |
+
- "What are the latest treatments for Alzheimer's disease?"
|
| 19 |
+
- "Review the evidence for metformin in cancer prevention"
|
| 20 |
+
- "What clinical trials are investigating COVID-19 vaccines?"
|
| 21 |
+
|
| 22 |
+
2. **Submit the Query**
|
| 23 |
+
|
| 24 |
+
Click "Submit" or press Enter. The system will:
|
| 25 |
+
- Generate observations about your query
|
| 26 |
+
- Identify knowledge gaps
|
| 27 |
+
- Search multiple sources (PubMed, ClinicalTrials.gov, Europe PMC)
|
| 28 |
+
- Evaluate evidence quality
|
| 29 |
+
- Synthesize findings into a report
|
| 30 |
+
|
| 31 |
+
3. **Review Results**
|
| 32 |
+
|
| 33 |
+
Watch the real-time progress in the chat interface:
|
| 34 |
+
- Search operations and results
|
| 35 |
+
- Evidence evaluation
|
| 36 |
+
- Report generation
|
| 37 |
+
- Final research report with citations
|
| 38 |
+
|
| 39 |
+
## Authentication
|
| 40 |
+
|
| 41 |
+
### HuggingFace OAuth (Recommended)
|
| 42 |
+
|
| 43 |
+
1. Click "Sign in with HuggingFace" at the top of the app
|
| 44 |
+
2. Authorize the application
|
| 45 |
+
3. Your HuggingFace API token will be automatically used
|
| 46 |
+
4. No need to manually enter API keys
|
| 47 |
+
|
| 48 |
+
### Manual API Key
|
| 49 |
+
|
| 50 |
+
1. Open the Settings accordion
|
| 51 |
+
2. Enter your API key:
|
| 52 |
+
- OpenAI API key
|
| 53 |
+
- Anthropic API key
|
| 54 |
+
- HuggingFace API key
|
| 55 |
+
3. Click "Save Settings"
|
| 56 |
+
4. Manual keys take priority over OAuth tokens
|
| 57 |
+
|
| 58 |
+
## Understanding the Interface
|
| 59 |
+
|
| 60 |
+
### Chat Interface
|
| 61 |
+
|
| 62 |
+
- **Input**: Enter your research questions here
|
| 63 |
+
- **Messages**: View conversation history and research progress
|
| 64 |
+
- **Streaming**: Real-time updates as research progresses
|
| 65 |
+
|
| 66 |
+
### Status Indicators
|
| 67 |
+
|
| 68 |
+
- **Searching**: Active search operations
|
| 69 |
+
- **Evaluating**: Evidence quality assessment
|
| 70 |
+
- **Synthesizing**: Report generation
|
| 71 |
+
- **Complete**: Research finished
|
| 72 |
+
|
| 73 |
+
### Settings
|
| 74 |
+
|
| 75 |
+
- **API Keys**: Configure LLM providers
|
| 76 |
+
- **Research Mode**: Choose iterative or deep research
|
| 77 |
+
- **Budget Limits**: Set token, time, and iteration limits
|
| 78 |
+
|
| 79 |
+
## Example Queries
|
| 80 |
+
|
| 81 |
+
### Simple Query
|
| 82 |
+
|
| 83 |
+
```
|
| 84 |
+
What are the side effects of metformin?
|
| 85 |
+
```
|
| 86 |
+
|
| 87 |
+
### Complex Query
|
| 88 |
+
|
| 89 |
+
```
|
| 90 |
+
Review the evidence for using metformin as an anti-aging intervention,
|
| 91 |
+
including clinical trials, mechanisms of action, and safety profile.
|
| 92 |
+
```
|
| 93 |
+
|
| 94 |
+
### Clinical Trial Query
|
| 95 |
+
|
| 96 |
+
```
|
| 97 |
+
What are the active clinical trials investigating Alzheimer's disease treatments?
|
| 98 |
+
```
|
| 99 |
+
|
| 100 |
+
## Next Steps
|
| 101 |
+
|
| 102 |
+
- Learn about [MCP Integration](mcp-integration.md) to use DeepCritical from Claude Desktop
|
| 103 |
+
- Explore [Examples](examples.md) for more use cases
|
| 104 |
+
- Read the [Configuration Guide](../configuration/index.md) for advanced settings
|
| 105 |
+
- Check out the [Architecture Documentation](../architecture/graph-orchestration.md) to understand how it works
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
|
docs/license.md
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# License
|
| 2 |
+
|
| 3 |
+
DeepCritical is licensed under the MIT License.
|
| 4 |
+
|
| 5 |
+
## MIT License
|
| 6 |
+
|
| 7 |
+
Copyright (c) 2024 DeepCritical Team
|
| 8 |
+
|
| 9 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 10 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 11 |
+
in the Software without restriction, including without limitation the rights
|
| 12 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 13 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 14 |
+
furnished to do so, subject to the following conditions:
|
| 15 |
+
|
| 16 |
+
The above copyright notice and this permission notice shall be included in all
|
| 17 |
+
copies or substantial portions of the Software.
|
| 18 |
+
|
| 19 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 20 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 21 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 22 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 23 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 24 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 25 |
+
SOFTWARE.
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
|
docs/overview/architecture.md
ADDED
|
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Architecture Overview
|
| 2 |
+
|
| 3 |
+
DeepCritical is a deep research agent system that uses iterative search-and-judge loops to comprehensively answer research questions. The system supports multiple orchestration patterns, graph-based execution, parallel research workflows, and long-running task management with real-time streaming.
|
| 4 |
+
|
| 5 |
+
## Core Architecture
|
| 6 |
+
|
| 7 |
+
### Orchestration Patterns
|
| 8 |
+
|
| 9 |
+
1. **Graph Orchestrator** (`src/orchestrator/graph_orchestrator.py`):
|
| 10 |
+
- Graph-based execution using Pydantic AI agents as nodes
|
| 11 |
+
- Supports both iterative and deep research patterns
|
| 12 |
+
- Node types: Agent, State, Decision, Parallel
|
| 13 |
+
- Edge types: Sequential, Conditional, Parallel
|
| 14 |
+
- Conditional routing based on knowledge gaps, budget, and iterations
|
| 15 |
+
- Parallel execution for concurrent research loops
|
| 16 |
+
- Event streaming via `AsyncGenerator[AgentEvent]` for real-time UI updates
|
| 17 |
+
- Fallback to agent chains when graph execution is disabled
|
| 18 |
+
|
| 19 |
+
2. **Deep Research Flow** (`src/orchestrator/research_flow.py`):
|
| 20 |
+
- **Pattern**: Planner → Parallel Iterative Loops (one per section) → Synthesis
|
| 21 |
+
- Uses `PlannerAgent` to break query into report sections
|
| 22 |
+
- Runs `IterativeResearchFlow` instances in parallel per section via `WorkflowManager`
|
| 23 |
+
- Synthesizes results using `LongWriterAgent` or `ProofreaderAgent`
|
| 24 |
+
- Supports both graph execution (`use_graph=True`) and agent chains (`use_graph=False`)
|
| 25 |
+
- Budget tracking per section and globally
|
| 26 |
+
- State synchronization across parallel loops
|
| 27 |
+
|
| 28 |
+
3. **Iterative Research Flow** (`src/orchestrator/research_flow.py`):
|
| 29 |
+
- **Pattern**: Generate observations → Evaluate gaps → Select tools → Execute → Judge → Continue/Complete
|
| 30 |
+
- Uses `KnowledgeGapAgent`, `ToolSelectorAgent`, `ThinkingAgent`, `WriterAgent`
|
| 31 |
+
- `JudgeHandler` assesses evidence sufficiency
|
| 32 |
+
- Iterates until research complete or constraints met (iterations, time, tokens)
|
| 33 |
+
- Supports graph execution and agent chains
|
| 34 |
+
|
| 35 |
+
4. **Magentic Orchestrator** (`src/orchestrator_magentic.py`):
|
| 36 |
+
- Multi-agent coordination using `agent-framework-core`
|
| 37 |
+
- ChatAgent pattern with internal LLMs per agent
|
| 38 |
+
- Uses `MagenticBuilder` with participants: searcher, hypothesizer, judge, reporter
|
| 39 |
+
- Manager orchestrates agents via `OpenAIChatClient`
|
| 40 |
+
- Requires OpenAI API key (function calling support)
|
| 41 |
+
- Event-driven: converts Magentic events to `AgentEvent` for UI streaming
|
| 42 |
+
- Supports long-running workflows with max rounds and stall/reset handling
|
| 43 |
+
|
| 44 |
+
5. **Hierarchical Orchestrator** (`src/orchestrator_hierarchical.py`):
|
| 45 |
+
- Uses `SubIterationMiddleware` with `ResearchTeam` and `LLMSubIterationJudge`
|
| 46 |
+
- Adapts Magentic ChatAgent to `SubIterationTeam` protocol
|
| 47 |
+
- Event-driven via `asyncio.Queue` for coordination
|
| 48 |
+
- Supports sub-iteration patterns for complex research tasks
|
| 49 |
+
|
| 50 |
+
6. **Legacy Simple Mode** (`src/legacy_orchestrator.py`):
|
| 51 |
+
- Linear search-judge-synthesize loop
|
| 52 |
+
- Uses `SearchHandlerProtocol` and `JudgeHandlerProtocol`
|
| 53 |
+
- Generator-based design yielding `AgentEvent` objects
|
| 54 |
+
- Backward compatibility for simple use cases
|
| 55 |
+
|
| 56 |
+
## Long-Running Task Support
|
| 57 |
+
|
| 58 |
+
The system is designed for long-running research tasks with comprehensive state management and streaming:
|
| 59 |
+
|
| 60 |
+
1. **Event Streaming**:
|
| 61 |
+
- All orchestrators yield `AgentEvent` objects via `AsyncGenerator`
|
| 62 |
+
- Real-time UI updates through Gradio chat interface
|
| 63 |
+
- Event types: `started`, `searching`, `search_complete`, `judging`, `judge_complete`, `looping`, `synthesizing`, `hypothesizing`, `complete`, `error`
|
| 64 |
+
- Metadata includes iteration numbers, tool names, result counts, durations
|
| 65 |
+
|
| 66 |
+
2. **Budget Tracking** (`src/middleware/budget_tracker.py`):
|
| 67 |
+
- Per-loop and global budget management
|
| 68 |
+
- Tracks: tokens, time (seconds), iterations
|
| 69 |
+
- Budget enforcement at decision nodes
|
| 70 |
+
- Token estimation (~4 chars per token)
|
| 71 |
+
- Early termination when budgets exceeded
|
| 72 |
+
- Budget summaries for monitoring
|
| 73 |
+
|
| 74 |
+
3. **Workflow Manager** (`src/middleware/workflow_manager.py`):
|
| 75 |
+
- Coordinates parallel research loops
|
| 76 |
+
- Tracks loop status: `pending`, `running`, `completed`, `failed`, `cancelled`
|
| 77 |
+
- Synchronizes evidence between loops and global state
|
| 78 |
+
- Handles errors per loop (doesn't fail all if one fails)
|
| 79 |
+
- Supports loop cancellation and timeout handling
|
| 80 |
+
- Evidence deduplication across parallel loops
|
| 81 |
+
|
| 82 |
+
4. **State Management** (`src/middleware/state_machine.py`):
|
| 83 |
+
- Thread-safe isolation using `ContextVar` for concurrent requests
|
| 84 |
+
- `WorkflowState` tracks: evidence, conversation history, embedding service
|
| 85 |
+
- Evidence deduplication by URL
|
| 86 |
+
- Semantic search via embedding service
|
| 87 |
+
- State persistence across long-running workflows
|
| 88 |
+
- Supports both iterative and deep research patterns
|
| 89 |
+
|
| 90 |
+
5. **Gradio UI** (`src/app.py`):
|
| 91 |
+
- Real-time streaming of research progress
|
| 92 |
+
- Accordion-based UI for pending/done operations
|
| 93 |
+
- OAuth integration (HuggingFace)
|
| 94 |
+
- Multiple backend support (API keys, free tier)
|
| 95 |
+
- Handles long-running tasks with progress indicators
|
| 96 |
+
- Event accumulation for pending operations
|
| 97 |
+
|
| 98 |
+
## Graph Architecture
|
| 99 |
+
|
| 100 |
+
The graph orchestrator (`src/orchestrator/graph_orchestrator.py`) implements a flexible graph-based execution model:
|
| 101 |
+
|
| 102 |
+
**Node Types**:
|
| 103 |
+
|
| 104 |
+
- **Agent Nodes**: Execute Pydantic AI agents (e.g., `KnowledgeGapAgent`, `ToolSelectorAgent`)
|
| 105 |
+
- **State Nodes**: Update or read workflow state (evidence, conversation)
|
| 106 |
+
- **Decision Nodes**: Make routing decisions (research complete?, budget exceeded?)
|
| 107 |
+
- **Parallel Nodes**: Execute multiple nodes concurrently (parallel research loops)
|
| 108 |
+
|
| 109 |
+
**Edge Types**:
|
| 110 |
+
|
| 111 |
+
- **Sequential Edges**: Always traversed (no condition)
|
| 112 |
+
- **Conditional Edges**: Traversed based on condition (e.g., if research complete → writer, else → tool selector)
|
| 113 |
+
- **Parallel Edges**: Used for parallel execution branches
|
| 114 |
+
|
| 115 |
+
**Graph Patterns**:
|
| 116 |
+
|
| 117 |
+
- **Iterative Graph**: `[Input] → [Thinking] → [Knowledge Gap] → [Decision: Complete?] → [Tool Selector] or [Writer]`
|
| 118 |
+
- **Deep Research Graph**: `[Input] → [Planner] → [Parallel Iterative Loops] → [Synthesizer]`
|
| 119 |
+
|
| 120 |
+
**Execution Flow**:
|
| 121 |
+
|
| 122 |
+
1. Graph construction from nodes and edges
|
| 123 |
+
2. Graph validation (no cycles, all nodes reachable)
|
| 124 |
+
3. Graph execution from entry node
|
| 125 |
+
4. Node execution based on type
|
| 126 |
+
5. Edge evaluation for next node(s)
|
| 127 |
+
6. Parallel execution via `asyncio.gather()`
|
| 128 |
+
7. State updates at state nodes
|
| 129 |
+
8. Event streaming for UI
|
| 130 |
+
|
| 131 |
+
## Key Components
|
| 132 |
+
|
| 133 |
+
- **Orchestrators**: Multiple orchestration patterns (`src/orchestrator/`, `src/orchestrator_*.py`)
|
| 134 |
+
- **Research Flows**: Iterative and deep research patterns (`src/orchestrator/research_flow.py`)
|
| 135 |
+
- **Graph Builder**: Graph construction utilities (`src/agent_factory/graph_builder.py`)
|
| 136 |
+
- **Agents**: Pydantic AI agents (`src/agents/`, `src/agent_factory/agents.py`)
|
| 137 |
+
- **Search Tools**: PubMed, ClinicalTrials.gov, Europe PMC, RAG (`src/tools/`)
|
| 138 |
+
- **Judge Handler**: LLM-based evidence assessment (`src/agent_factory/judges.py`)
|
| 139 |
+
- **Embeddings**: Semantic search & deduplication (`src/services/embeddings.py`)
|
| 140 |
+
- **Statistical Analyzer**: Modal sandbox execution (`src/services/statistical_analyzer.py`)
|
| 141 |
+
- **Middleware**: State management, budget tracking, workflow coordination (`src/middleware/`)
|
| 142 |
+
- **MCP Tools**: Claude Desktop integration (`src/mcp_tools.py`)
|
| 143 |
+
- **Gradio UI**: Web interface with MCP server and streaming (`src/app.py`)
|
| 144 |
+
|
| 145 |
+
## Research Team & Parallel Execution
|
| 146 |
+
|
| 147 |
+
The system supports complex research workflows through:
|
| 148 |
+
|
| 149 |
+
1. **WorkflowManager**: Coordinates multiple parallel research loops
|
| 150 |
+
- Creates and tracks `ResearchLoop` instances
|
| 151 |
+
- Runs loops in parallel via `asyncio.gather()`
|
| 152 |
+
- Synchronizes evidence to global state
|
| 153 |
+
- Handles loop failures gracefully
|
| 154 |
+
|
| 155 |
+
2. **Deep Research Pattern**: Breaks complex queries into sections
|
| 156 |
+
- Planner creates report outline with sections
|
| 157 |
+
- Each section runs as independent iterative research loop
|
| 158 |
+
- Loops execute in parallel
|
| 159 |
+
- Evidence shared across loops via global state
|
| 160 |
+
- Final synthesis combines all section results
|
| 161 |
+
|
| 162 |
+
3. **State Synchronization**: Thread-safe evidence sharing
|
| 163 |
+
- Evidence deduplication by URL
|
| 164 |
+
- Global state accessible to all loops
|
| 165 |
+
- Semantic search across all collected evidence
|
| 166 |
+
- Conversation history tracking per iteration
|
| 167 |
+
|
| 168 |
+
## Configuration & Modes
|
| 169 |
+
|
| 170 |
+
- **Orchestrator Factory** (`src/orchestrator_factory.py`):
|
| 171 |
+
- Auto-detects mode: "advanced" if OpenAI key available, else "simple"
|
| 172 |
+
- Supports explicit mode selection: "simple", "magentic", "advanced"
|
| 173 |
+
- Lazy imports for optional dependencies
|
| 174 |
+
|
| 175 |
+
- **Research Modes**:
|
| 176 |
+
- `iterative`: Single research loop
|
| 177 |
+
- `deep`: Multi-section parallel research
|
| 178 |
+
- `auto`: Auto-detect based on query complexity
|
| 179 |
+
|
| 180 |
+
- **Execution Modes**:
|
| 181 |
+
- `use_graph=True`: Graph-based execution (parallel, conditional routing)
|
| 182 |
+
- `use_graph=False`: Agent chains (sequential, backward compatible)
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
|
docs/overview/features.md
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Features
|
| 2 |
+
|
| 3 |
+
DeepCritical provides a comprehensive set of features for AI-assisted research:
|
| 4 |
+
|
| 5 |
+
## Core Features
|
| 6 |
+
|
| 7 |
+
### Multi-Source Search
|
| 8 |
+
|
| 9 |
+
- **PubMed**: Search peer-reviewed biomedical literature via NCBI E-utilities
|
| 10 |
+
- **ClinicalTrials.gov**: Search interventional clinical trials
|
| 11 |
+
- **Europe PMC**: Search preprints and peer-reviewed articles (includes bioRxiv/medRxiv)
|
| 12 |
+
- **RAG**: Semantic search within collected evidence using LlamaIndex
|
| 13 |
+
|
| 14 |
+
### MCP Integration
|
| 15 |
+
|
| 16 |
+
- **Model Context Protocol**: Expose search tools via MCP server
|
| 17 |
+
- **Claude Desktop**: Use DeepCritical tools directly from Claude Desktop
|
| 18 |
+
- **MCP Clients**: Compatible with any MCP-compatible client
|
| 19 |
+
|
| 20 |
+
### Authentication
|
| 21 |
+
|
| 22 |
+
- **HuggingFace OAuth**: Sign in with HuggingFace account for automatic API token usage
|
| 23 |
+
- **Manual API Keys**: Support for OpenAI, Anthropic, and HuggingFace API keys
|
| 24 |
+
- **Free Tier Support**: Automatic fallback to HuggingFace Inference API
|
| 25 |
+
|
| 26 |
+
### Secure Code Execution
|
| 27 |
+
|
| 28 |
+
- **Modal Sandbox**: Secure execution of AI-generated statistical code
|
| 29 |
+
- **Isolated Environment**: Network isolation and package version pinning
|
| 30 |
+
- **Safe Execution**: Prevents malicious code execution
|
| 31 |
+
|
| 32 |
+
### Semantic Search & RAG
|
| 33 |
+
|
| 34 |
+
- **LlamaIndex Integration**: Advanced RAG capabilities
|
| 35 |
+
- **Vector Storage**: ChromaDB for embedding storage
|
| 36 |
+
- **Semantic Deduplication**: Automatic detection of similar evidence
|
| 37 |
+
- **Embedding Service**: Local sentence-transformers (no API key required)
|
| 38 |
+
|
| 39 |
+
### Orchestration Patterns
|
| 40 |
+
|
| 41 |
+
- **Graph-Based Execution**: Flexible graph orchestration with conditional routing
|
| 42 |
+
- **Parallel Research Loops**: Run multiple research tasks concurrently
|
| 43 |
+
- **Iterative Research**: Single-loop research with search-judge-synthesize cycles
|
| 44 |
+
- **Deep Research**: Multi-section parallel research with planning and synthesis
|
| 45 |
+
- **Magentic Orchestration**: Multi-agent coordination using Microsoft Agent Framework
|
| 46 |
+
|
| 47 |
+
### Real-Time Streaming
|
| 48 |
+
|
| 49 |
+
- **Event Streaming**: Real-time updates via `AsyncGenerator[AgentEvent]`
|
| 50 |
+
- **Progress Tracking**: Monitor research progress with detailed event metadata
|
| 51 |
+
- **UI Integration**: Seamless integration with Gradio chat interface
|
| 52 |
+
|
| 53 |
+
### Budget Management
|
| 54 |
+
|
| 55 |
+
- **Token Budget**: Track and limit LLM token usage
|
| 56 |
+
- **Time Budget**: Enforce time limits per research loop
|
| 57 |
+
- **Iteration Budget**: Limit maximum iterations
|
| 58 |
+
- **Per-Loop Budgets**: Independent budgets for parallel research loops
|
| 59 |
+
|
| 60 |
+
### State Management
|
| 61 |
+
|
| 62 |
+
- **Thread-Safe Isolation**: ContextVar-based state management
|
| 63 |
+
- **Evidence Deduplication**: Automatic URL-based deduplication
|
| 64 |
+
- **Conversation History**: Track iteration history and agent interactions
|
| 65 |
+
- **State Synchronization**: Share evidence across parallel loops
|
| 66 |
+
|
| 67 |
+
## Advanced Features
|
| 68 |
+
|
| 69 |
+
### Agent System
|
| 70 |
+
|
| 71 |
+
- **Pydantic AI Agents**: Type-safe agent implementation
|
| 72 |
+
- **Structured Output**: Pydantic models for agent responses
|
| 73 |
+
- **Agent Factory**: Centralized agent creation with fallback support
|
| 74 |
+
- **Specialized Agents**: Knowledge gap, tool selector, writer, proofreader, and more
|
| 75 |
+
|
| 76 |
+
### Search Tools
|
| 77 |
+
|
| 78 |
+
- **Rate Limiting**: Built-in rate limiting for external APIs
|
| 79 |
+
- **Retry Logic**: Automatic retry with exponential backoff
|
| 80 |
+
- **Query Preprocessing**: Automatic query enhancement and synonym expansion
|
| 81 |
+
- **Evidence Conversion**: Automatic conversion to structured Evidence objects
|
| 82 |
+
|
| 83 |
+
### Error Handling
|
| 84 |
+
|
| 85 |
+
- **Custom Exceptions**: Hierarchical exception system
|
| 86 |
+
- **Error Chaining**: Preserve exception context
|
| 87 |
+
- **Structured Logging**: Comprehensive logging with structlog
|
| 88 |
+
- **Graceful Degradation**: Fallback handlers for missing dependencies
|
| 89 |
+
|
| 90 |
+
### Configuration
|
| 91 |
+
|
| 92 |
+
- **Pydantic Settings**: Type-safe configuration management
|
| 93 |
+
- **Environment Variables**: Support for `.env` files
|
| 94 |
+
- **Validation**: Automatic configuration validation
|
| 95 |
+
- **Flexible Providers**: Support for multiple LLM and embedding providers
|
| 96 |
+
|
| 97 |
+
### Testing
|
| 98 |
+
|
| 99 |
+
- **Unit Tests**: Comprehensive unit test coverage
|
| 100 |
+
- **Integration Tests**: Real API integration tests
|
| 101 |
+
- **Mock Support**: Extensive mocking utilities
|
| 102 |
+
- **Coverage Reports**: Code coverage tracking
|
| 103 |
+
|
| 104 |
+
## UI Features
|
| 105 |
+
|
| 106 |
+
### Gradio Interface
|
| 107 |
+
|
| 108 |
+
- **Real-Time Chat**: Interactive chat interface
|
| 109 |
+
- **Streaming Updates**: Live progress updates
|
| 110 |
+
- **Accordion UI**: Organized display of pending/done operations
|
| 111 |
+
- **OAuth Integration**: Seamless HuggingFace authentication
|
| 112 |
+
|
| 113 |
+
### MCP Server
|
| 114 |
+
|
| 115 |
+
- **RESTful API**: HTTP-based MCP server
|
| 116 |
+
- **Tool Discovery**: Automatic tool registration
|
| 117 |
+
- **Request Handling**: Async request processing
|
| 118 |
+
- **Error Responses**: Structured error responses
|
| 119 |
+
|
| 120 |
+
## Development Features
|
| 121 |
+
|
| 122 |
+
### Code Quality
|
| 123 |
+
|
| 124 |
+
- **Type Safety**: Full type hints with mypy strict mode
|
| 125 |
+
- **Linting**: Ruff for code quality
|
| 126 |
+
- **Formatting**: Automatic code formatting
|
| 127 |
+
- **Pre-commit Hooks**: Automated quality checks
|
| 128 |
+
|
| 129 |
+
### Documentation
|
| 130 |
+
|
| 131 |
+
- **Comprehensive Docs**: Detailed documentation for all components
|
| 132 |
+
- **Code Examples**: Extensive code examples
|
| 133 |
+
- **Architecture Diagrams**: Visual architecture documentation
|
| 134 |
+
- **API Reference**: Complete API documentation
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
|
docs/team.md
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Team
|
| 2 |
+
|
| 3 |
+
DeepCritical is developed by a team of researchers and developers working on AI-assisted research.
|
| 4 |
+
|
| 5 |
+
## Team Members
|
| 6 |
+
|
| 7 |
+
### The-Obstacle-Is-The-Way
|
| 8 |
+
|
| 9 |
+
- GitHub: [The-Obstacle-Is-The-Way](https://github.com/The-Obstacle-Is-The-Way)
|
| 10 |
+
|
| 11 |
+
### MarioAderman
|
| 12 |
+
|
| 13 |
+
- GitHub: [MarioAderman](https://github.com/MarioAderman)
|
| 14 |
+
|
| 15 |
+
### Josephrp
|
| 16 |
+
|
| 17 |
+
- GitHub: [Josephrp](https://github.com/Josephrp)
|
| 18 |
+
|
| 19 |
+
## About
|
| 20 |
+
|
| 21 |
+
The DeepCritical team met online in the Alzheimer's Critical Literature Review Group in the Hugging Science initiative. We're building the agent framework we want to use for AI-assisted research to turn the vast amounts of clinical data into cures.
|
| 22 |
+
|
| 23 |
+
## Contributing
|
| 24 |
+
|
| 25 |
+
We welcome contributions! See the [Contributing Guide](contributing/index.md) for details.
|
| 26 |
+
|
| 27 |
+
## Links
|
| 28 |
+
|
| 29 |
+
- [GitHub Repository](https://github.com/DeepCritical/GradioDemo)
|
| 30 |
+
- [HuggingFace Space](https://huggingface.co/spaces/DataQuests/DeepCritical)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
|
src/app.py
CHANGED
|
@@ -5,12 +5,24 @@ from collections.abc import AsyncGenerator
|
|
| 5 |
from typing import Any
|
| 6 |
|
| 7 |
import gradio as gr
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
from src.agent_factory.judges import HFInferenceJudgeHandler, JudgeHandler, MockJudgeHandler
|
| 16 |
from src.orchestrator_factory import create_orchestrator
|
|
@@ -19,14 +31,15 @@ from src.tools.europepmc import EuropePMCTool
|
|
| 19 |
from src.tools.pubmed import PubMedTool
|
| 20 |
from src.tools.search_handler import SearchHandler
|
| 21 |
from src.utils.config import settings
|
| 22 |
-
from src.utils.models import OrchestratorConfig
|
| 23 |
|
| 24 |
|
| 25 |
def configure_orchestrator(
|
| 26 |
use_mock: bool = False,
|
| 27 |
mode: str = "simple",
|
| 28 |
-
|
| 29 |
-
|
|
|
|
| 30 |
) -> tuple[Any, str]:
|
| 31 |
"""
|
| 32 |
Create an orchestrator instance.
|
|
@@ -34,8 +47,9 @@ def configure_orchestrator(
|
|
| 34 |
Args:
|
| 35 |
use_mock: If True, use MockJudgeHandler (no API key needed)
|
| 36 |
mode: Orchestrator mode ("simple" or "advanced")
|
| 37 |
-
|
| 38 |
-
|
|
|
|
| 39 |
|
| 40 |
Returns:
|
| 41 |
Tuple of (Orchestrator instance, backend_name)
|
|
@@ -61,46 +75,52 @@ def configure_orchestrator(
|
|
| 61 |
judge_handler = MockJudgeHandler()
|
| 62 |
backend_info = "Mock (Testing)"
|
| 63 |
|
| 64 |
-
# 2. API Key (
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
)
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
if user_api_key:
|
| 76 |
-
# Validate key/provider match to prevent silent auth failures
|
| 77 |
-
if api_provider == "openai" and user_api_key.startswith("sk-ant-"):
|
| 78 |
-
raise ValueError("Anthropic key provided but OpenAI provider selected")
|
| 79 |
-
is_openai_key = user_api_key.startswith("sk-") and not user_api_key.startswith(
|
| 80 |
-
"sk-ant-"
|
| 81 |
)
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
elif api_provider == "openai":
|
| 92 |
-
openai_provider = OpenAIProvider(api_key=user_api_key)
|
| 93 |
-
model = OpenAIModel(settings.openai_model, provider=openai_provider)
|
| 94 |
-
backend_info = f"API ({api_provider.upper()})"
|
| 95 |
-
else:
|
| 96 |
-
backend_info = "API (Env Config)"
|
| 97 |
|
| 98 |
judge_handler = JudgeHandler(model=model)
|
| 99 |
|
| 100 |
-
# 3. Free Tier (HuggingFace Inference)
|
| 101 |
else:
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
orchestrator = create_orchestrator(
|
| 106 |
search_handler=search_handler,
|
|
@@ -112,13 +132,289 @@ def configure_orchestrator(
|
|
| 112 |
return orchestrator, backend_info
|
| 113 |
|
| 114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
async def research_agent(
|
| 116 |
message: str,
|
| 117 |
history: list[dict[str, Any]],
|
| 118 |
mode: str = "simple",
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
|
|
|
|
|
|
| 122 |
"""
|
| 123 |
Gradio chat function that runs the research agent.
|
| 124 |
|
|
@@ -126,142 +422,205 @@ async def research_agent(
|
|
| 126 |
message: User's research question
|
| 127 |
history: Chat history (Gradio format)
|
| 128 |
mode: Orchestrator mode ("simple" or "advanced")
|
| 129 |
-
|
| 130 |
-
|
|
|
|
|
|
|
| 131 |
|
| 132 |
Yields:
|
| 133 |
-
|
| 134 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
if not message.strip():
|
| 136 |
-
yield
|
|
|
|
|
|
|
|
|
|
| 137 |
return
|
| 138 |
|
| 139 |
-
#
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
# Check available keys
|
| 143 |
-
has_huggingface = bool(os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_API_KEY"))
|
| 144 |
-
has_openai = bool(os.getenv("OPENAI_API_KEY"))
|
| 145 |
-
has_anthropic = bool(os.getenv("ANTHROPIC_API_KEY"))
|
| 146 |
-
has_user_key = bool(user_api_key)
|
| 147 |
-
has_paid_key = has_openai or has_anthropic or has_user_key
|
| 148 |
-
|
| 149 |
-
# Advanced mode requires OpenAI specifically (due to agent-framework binding)
|
| 150 |
-
if mode == "advanced" and not (has_openai or (has_user_key and api_provider == "openai")):
|
| 151 |
-
yield (
|
| 152 |
-
"⚠️ **Warning**: Advanced mode currently requires OpenAI API key. "
|
| 153 |
-
"Falling back to simple mode.\n\n"
|
| 154 |
-
)
|
| 155 |
-
mode = "simple"
|
| 156 |
|
| 157 |
-
#
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
"Your key is used only for this session and is never stored.\n\n"
|
| 162 |
-
)
|
| 163 |
-
elif not has_paid_key and not has_huggingface:
|
| 164 |
-
# No keys at all - will use FREE HuggingFace Inference (public models)
|
| 165 |
-
yield (
|
| 166 |
-
"🤗 **Free Tier**: Using HuggingFace Inference (Llama 3.1 / Mistral) for AI analysis.\n"
|
| 167 |
-
"For premium models or higher rate limits, enter a HuggingFace, OpenAI, or Anthropic API key below.\n\n"
|
| 168 |
-
)
|
| 169 |
|
| 170 |
-
#
|
| 171 |
-
|
|
|
|
| 172 |
|
|
|
|
| 173 |
try:
|
| 174 |
# use_mock=False - let configure_orchestrator decide based on available keys
|
| 175 |
-
# It will use:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
orchestrator, backend_name = configure_orchestrator(
|
| 177 |
use_mock=False, # Never use mock in production - HF Inference is the free fallback
|
| 178 |
-
mode=
|
| 179 |
-
|
| 180 |
-
|
|
|
|
| 181 |
)
|
| 182 |
|
| 183 |
-
yield
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
event_md = event.to_markdown()
|
| 188 |
-
response_parts.append(event_md)
|
| 189 |
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
else:
|
| 194 |
-
# Show progress
|
| 195 |
-
yield "\n\n".join(response_parts)
|
| 196 |
|
| 197 |
except Exception as e:
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
"""
|
| 203 |
-
Create the Gradio demo interface with MCP support.
|
| 204 |
|
| 205 |
Returns:
|
| 206 |
-
Configured Gradio Blocks interface with MCP server enabled
|
| 207 |
"""
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
],
|
| 226 |
-
[
|
| 227 |
-
"Is metformin effective for treating cancer?",
|
| 228 |
-
"simple",
|
| 229 |
-
"",
|
| 230 |
-
"openai",
|
| 231 |
-
],
|
| 232 |
-
[
|
| 233 |
-
"What medications show promise for Long COVID treatment?",
|
| 234 |
-
"simple",
|
| 235 |
-
"",
|
| 236 |
-
"openai",
|
| 237 |
-
],
|
| 238 |
-
],
|
| 239 |
-
additional_inputs_accordion=gr.Accordion(label="⚙️ Settings", open=False),
|
| 240 |
-
additional_inputs=[
|
| 241 |
-
gr.Radio(
|
| 242 |
choices=["simple", "advanced"],
|
| 243 |
value="simple",
|
| 244 |
label="Orchestrator Mode",
|
| 245 |
-
info=(
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
)
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
)
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
value="
|
| 258 |
-
label="
|
| 259 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
),
|
| 261 |
-
|
| 262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
|
| 264 |
-
return demo
|
| 265 |
|
| 266 |
|
| 267 |
def main() -> None:
|
|
|
|
| 5 |
from typing import Any
|
| 6 |
|
| 7 |
import gradio as gr
|
| 8 |
+
|
| 9 |
+
# Try to import HuggingFace support (may not be available in all pydantic-ai versions)
|
| 10 |
+
# According to https://ai.pydantic.dev/models/huggingface/, HuggingFace support requires
|
| 11 |
+
# pydantic-ai with huggingface extra or pydantic-ai-slim[huggingface]
|
| 12 |
+
# There are two ways to use HuggingFace:
|
| 13 |
+
# 1. Inference API: HuggingFaceModel with HuggingFaceProvider (uses AsyncInferenceClient internally)
|
| 14 |
+
# 2. Local models: Would use transformers directly (not via pydantic-ai)
|
| 15 |
+
try:
|
| 16 |
+
from huggingface_hub import AsyncInferenceClient
|
| 17 |
+
from pydantic_ai.models.huggingface import HuggingFaceModel
|
| 18 |
+
from pydantic_ai.providers.huggingface import HuggingFaceProvider
|
| 19 |
+
|
| 20 |
+
_HUGGINGFACE_AVAILABLE = True
|
| 21 |
+
except ImportError:
|
| 22 |
+
HuggingFaceModel = None # type: ignore[assignment, misc]
|
| 23 |
+
HuggingFaceProvider = None # type: ignore[assignment, misc]
|
| 24 |
+
AsyncInferenceClient = None # type: ignore[assignment, misc]
|
| 25 |
+
_HUGGINGFACE_AVAILABLE = False
|
| 26 |
|
| 27 |
from src.agent_factory.judges import HFInferenceJudgeHandler, JudgeHandler, MockJudgeHandler
|
| 28 |
from src.orchestrator_factory import create_orchestrator
|
|
|
|
| 31 |
from src.tools.pubmed import PubMedTool
|
| 32 |
from src.tools.search_handler import SearchHandler
|
| 33 |
from src.utils.config import settings
|
| 34 |
+
from src.utils.models import AgentEvent, OrchestratorConfig
|
| 35 |
|
| 36 |
|
| 37 |
def configure_orchestrator(
|
| 38 |
use_mock: bool = False,
|
| 39 |
mode: str = "simple",
|
| 40 |
+
oauth_token: str | None = None,
|
| 41 |
+
hf_model: str | None = None,
|
| 42 |
+
hf_provider: str | None = None,
|
| 43 |
) -> tuple[Any, str]:
|
| 44 |
"""
|
| 45 |
Create an orchestrator instance.
|
|
|
|
| 47 |
Args:
|
| 48 |
use_mock: If True, use MockJudgeHandler (no API key needed)
|
| 49 |
mode: Orchestrator mode ("simple" or "advanced")
|
| 50 |
+
oauth_token: Optional OAuth token from HuggingFace login
|
| 51 |
+
hf_model: Selected HuggingFace model ID
|
| 52 |
+
hf_provider: Selected inference provider
|
| 53 |
|
| 54 |
Returns:
|
| 55 |
Tuple of (Orchestrator instance, backend_name)
|
|
|
|
| 75 |
judge_handler = MockJudgeHandler()
|
| 76 |
backend_info = "Mock (Testing)"
|
| 77 |
|
| 78 |
+
# 2. API Key (OAuth or Env) - HuggingFace only (OAuth provides HF token)
|
| 79 |
+
# Priority: oauth_token > env vars
|
| 80 |
+
# On HuggingFace Spaces, OAuth token is available via request.oauth_token
|
| 81 |
+
effective_api_key = oauth_token or os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_API_KEY")
|
| 82 |
+
|
| 83 |
+
if effective_api_key:
|
| 84 |
+
# We have an API key (OAuth or env) - use pydantic-ai with JudgeHandler
|
| 85 |
+
# This uses HuggingFace's own inference API, not third-party providers
|
| 86 |
+
model: Any | None = None
|
| 87 |
+
# Use selected model or fall back to env var/settings
|
| 88 |
+
model_name = (
|
| 89 |
+
hf_model
|
| 90 |
+
or os.getenv("HF_MODEL")
|
| 91 |
+
or settings.huggingface_model
|
| 92 |
+
or "Qwen/Qwen3-Next-80B-A3B-Thinking"
|
| 93 |
)
|
| 94 |
+
if not _HUGGINGFACE_AVAILABLE:
|
| 95 |
+
raise ImportError(
|
| 96 |
+
"HuggingFace models are not available in this version of pydantic-ai. "
|
| 97 |
+
"Please install with: uv add 'pydantic-ai[huggingface]' or use 'openai'/'anthropic' as the LLM provider."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
)
|
| 99 |
+
# Inference API - uses HuggingFace Inference API via AsyncInferenceClient
|
| 100 |
+
# Per https://ai.pydantic.dev/models/huggingface/#configure-the-provider
|
| 101 |
+
# Create AsyncInferenceClient for inference API
|
| 102 |
+
# AsyncInferenceClient accepts 'token' parameter for API key
|
| 103 |
+
hf_client = AsyncInferenceClient(token=effective_api_key) # type: ignore[misc]
|
| 104 |
+
# Pass client to HuggingFaceProvider for inference API usage
|
| 105 |
+
provider = HuggingFaceProvider(hf_client=hf_client) # type: ignore[misc]
|
| 106 |
+
model = HuggingFaceModel(model_name, provider=provider) # type: ignore[misc]
|
| 107 |
+
backend_info = "API (HuggingFace OAuth)" if oauth_token else "API (Env Config)"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
judge_handler = JudgeHandler(model=model)
|
| 110 |
|
| 111 |
+
# 3. Free Tier (HuggingFace Inference) - NO API KEY AVAILABLE
|
| 112 |
else:
|
| 113 |
+
# No API key available - use HFInferenceJudgeHandler with public models
|
| 114 |
+
# Don't use third-party providers (novita, groq, etc.) as they require their own API keys
|
| 115 |
+
# Use HuggingFace's own inference API with public/ungated models
|
| 116 |
+
# Pass empty provider to use HuggingFace's default (not third-party providers)
|
| 117 |
+
judge_handler = HFInferenceJudgeHandler(
|
| 118 |
+
model_id=hf_model,
|
| 119 |
+
api_key=None, # No API key - will use public models only
|
| 120 |
+
provider=None, # Don't specify provider - use HuggingFace's default
|
| 121 |
+
)
|
| 122 |
+
model_display = hf_model.split("/")[-1] if hf_model else "Default (Public Models)"
|
| 123 |
+
backend_info = f"Free Tier ({model_display} - Public Models Only)"
|
| 124 |
|
| 125 |
orchestrator = create_orchestrator(
|
| 126 |
search_handler=search_handler,
|
|
|
|
| 132 |
return orchestrator, backend_info
|
| 133 |
|
| 134 |
|
| 135 |
+
def event_to_chat_message(event: AgentEvent) -> dict[str, Any]:
|
| 136 |
+
"""
|
| 137 |
+
Convert AgentEvent to gr.ChatMessage with metadata for accordion display.
|
| 138 |
+
|
| 139 |
+
Args:
|
| 140 |
+
event: The AgentEvent to convert
|
| 141 |
+
|
| 142 |
+
Returns:
|
| 143 |
+
ChatMessage with metadata for collapsible accordion
|
| 144 |
+
"""
|
| 145 |
+
# Map event types to accordion titles and determine if pending
|
| 146 |
+
event_configs: dict[str, dict[str, Any]] = {
|
| 147 |
+
"started": {"title": "🚀 Starting Research", "status": "done", "icon": "🚀"},
|
| 148 |
+
"searching": {"title": "🔍 Searching Literature", "status": "pending", "icon": "🔍"},
|
| 149 |
+
"search_complete": {"title": "📚 Search Results", "status": "done", "icon": "📚"},
|
| 150 |
+
"judging": {"title": "🧠 Evaluating Evidence", "status": "pending", "icon": "🧠"},
|
| 151 |
+
"judge_complete": {"title": "✅ Evidence Assessment", "status": "done", "icon": "✅"},
|
| 152 |
+
"looping": {"title": "🔄 Research Iteration", "status": "pending", "icon": "🔄"},
|
| 153 |
+
"synthesizing": {"title": "📝 Synthesizing Report", "status": "pending", "icon": "📝"},
|
| 154 |
+
"hypothesizing": {"title": "🔬 Generating Hypothesis", "status": "pending", "icon": "🔬"},
|
| 155 |
+
"analyzing": {"title": "📊 Statistical Analysis", "status": "pending", "icon": "📊"},
|
| 156 |
+
"analysis_complete": {"title": "📈 Analysis Results", "status": "done", "icon": "📈"},
|
| 157 |
+
"streaming": {"title": "📡 Processing", "status": "pending", "icon": "📡"},
|
| 158 |
+
"complete": {"title": None, "status": "done", "icon": "🎉"}, # Main response, no accordion
|
| 159 |
+
"error": {"title": "❌ Error", "status": "done", "icon": "❌"},
|
| 160 |
+
}
|
| 161 |
+
|
| 162 |
+
config = event_configs.get(
|
| 163 |
+
event.type, {"title": f"• {event.type}", "status": "done", "icon": "•"}
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
# For complete events, return main response without accordion
|
| 167 |
+
if event.type == "complete":
|
| 168 |
+
# Return as dict format for Gradio Chatbot compatibility
|
| 169 |
+
return {
|
| 170 |
+
"role": "assistant",
|
| 171 |
+
"content": event.message,
|
| 172 |
+
}
|
| 173 |
+
|
| 174 |
+
# Build metadata for accordion according to Gradio ChatMessage spec
|
| 175 |
+
# Metadata keys: title (str), status ("pending"|"done"), log (str), duration (float)
|
| 176 |
+
# See: https://www.gradio.app/guides/agents-and-tool-usage
|
| 177 |
+
metadata: dict[str, Any] = {}
|
| 178 |
+
|
| 179 |
+
# Title is required for accordion display - must be string
|
| 180 |
+
if config["title"]:
|
| 181 |
+
metadata["title"] = str(config["title"])
|
| 182 |
+
|
| 183 |
+
# Set status (pending shows spinner, done is collapsed)
|
| 184 |
+
# Must be exactly "pending" or "done" per Gradio spec
|
| 185 |
+
if config["status"] == "pending":
|
| 186 |
+
metadata["status"] = "pending"
|
| 187 |
+
elif config["status"] == "done":
|
| 188 |
+
metadata["status"] = "done"
|
| 189 |
+
|
| 190 |
+
# Add duration if available in data (must be float)
|
| 191 |
+
if event.data and isinstance(event.data, dict) and "duration" in event.data:
|
| 192 |
+
duration = event.data["duration"]
|
| 193 |
+
if isinstance(duration, int | float):
|
| 194 |
+
metadata["duration"] = float(duration)
|
| 195 |
+
|
| 196 |
+
# Add log info (iteration number, etc.) - must be string
|
| 197 |
+
log_parts: list[str] = []
|
| 198 |
+
if event.iteration > 0:
|
| 199 |
+
log_parts.append(f"Iteration {event.iteration}")
|
| 200 |
+
if event.data and isinstance(event.data, dict):
|
| 201 |
+
if "tool" in event.data:
|
| 202 |
+
log_parts.append(f"Tool: {event.data['tool']}")
|
| 203 |
+
if "results_count" in event.data:
|
| 204 |
+
log_parts.append(f"Results: {event.data['results_count']}")
|
| 205 |
+
if log_parts:
|
| 206 |
+
metadata["log"] = " | ".join(log_parts)
|
| 207 |
+
|
| 208 |
+
# Return as dict format for Gradio Chatbot compatibility
|
| 209 |
+
# According to Gradio docs: https://www.gradio.app/guides/agents-and-tool-usage
|
| 210 |
+
# ChatMessage format: {"role": "assistant", "content": "...", "metadata": {...}}
|
| 211 |
+
# Metadata must have "title" key for accordion display
|
| 212 |
+
# Valid metadata keys: title (str), status ("pending"|"done"), log (str), duration (float)
|
| 213 |
+
result: dict[str, Any] = {
|
| 214 |
+
"role": "assistant",
|
| 215 |
+
"content": event.message,
|
| 216 |
+
}
|
| 217 |
+
# Only add metadata if it has a title (required for accordion display)
|
| 218 |
+
# Ensure metadata values match Gradio's expected types
|
| 219 |
+
if metadata and metadata.get("title"):
|
| 220 |
+
# Ensure status is valid if present
|
| 221 |
+
if "status" in metadata:
|
| 222 |
+
status = metadata["status"]
|
| 223 |
+
if status not in ("pending", "done"):
|
| 224 |
+
metadata["status"] = "done" # Default to "done" if invalid
|
| 225 |
+
result["metadata"] = metadata
|
| 226 |
+
return result
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
def extract_oauth_info(request: gr.Request | None) -> tuple[str | None, str | None]:
|
| 230 |
+
"""
|
| 231 |
+
Extract OAuth token and username from Gradio request.
|
| 232 |
+
|
| 233 |
+
Args:
|
| 234 |
+
request: Gradio request object containing OAuth information
|
| 235 |
+
|
| 236 |
+
Returns:
|
| 237 |
+
Tuple of (oauth_token, oauth_username)
|
| 238 |
+
"""
|
| 239 |
+
oauth_token: str | None = None
|
| 240 |
+
oauth_username: str | None = None
|
| 241 |
+
|
| 242 |
+
if request is None:
|
| 243 |
+
return oauth_token, oauth_username
|
| 244 |
+
|
| 245 |
+
# Try multiple ways to access OAuth token (Gradio API may vary)
|
| 246 |
+
# Pattern 1: request.oauth_token.token
|
| 247 |
+
if hasattr(request, "oauth_token") and request.oauth_token is not None:
|
| 248 |
+
if hasattr(request.oauth_token, "token"):
|
| 249 |
+
oauth_token = request.oauth_token.token
|
| 250 |
+
elif isinstance(request.oauth_token, str):
|
| 251 |
+
oauth_token = request.oauth_token
|
| 252 |
+
# Pattern 2: request.headers (fallback)
|
| 253 |
+
elif hasattr(request, "headers"):
|
| 254 |
+
# OAuth token might be in headers
|
| 255 |
+
auth_header = request.headers.get("authorization") or request.headers.get("Authorization")
|
| 256 |
+
if auth_header and auth_header.startswith("Bearer "):
|
| 257 |
+
oauth_token = auth_header.replace("Bearer ", "")
|
| 258 |
+
|
| 259 |
+
# Access username from request
|
| 260 |
+
if hasattr(request, "username") and request.username:
|
| 261 |
+
oauth_username = request.username
|
| 262 |
+
# Also try accessing via oauth_profile if available
|
| 263 |
+
elif hasattr(request, "oauth_profile") and request.oauth_profile is not None:
|
| 264 |
+
if hasattr(request.oauth_profile, "username"):
|
| 265 |
+
oauth_username = request.oauth_profile.username
|
| 266 |
+
elif hasattr(request.oauth_profile, "name"):
|
| 267 |
+
oauth_username = request.oauth_profile.name
|
| 268 |
+
|
| 269 |
+
return oauth_token, oauth_username
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
async def yield_auth_messages(
|
| 273 |
+
oauth_username: str | None,
|
| 274 |
+
oauth_token: str | None,
|
| 275 |
+
has_huggingface: bool,
|
| 276 |
+
mode: str,
|
| 277 |
+
) -> AsyncGenerator[dict[str, Any], None]:
|
| 278 |
+
"""
|
| 279 |
+
Yield authentication and mode status messages.
|
| 280 |
+
|
| 281 |
+
Args:
|
| 282 |
+
oauth_username: OAuth username if available
|
| 283 |
+
oauth_token: OAuth token if available
|
| 284 |
+
has_huggingface: Whether HuggingFace credentials are available
|
| 285 |
+
mode: Orchestrator mode
|
| 286 |
+
|
| 287 |
+
Yields:
|
| 288 |
+
ChatMessage objects with authentication status
|
| 289 |
+
"""
|
| 290 |
+
# Show user greeting if logged in via OAuth
|
| 291 |
+
if oauth_username:
|
| 292 |
+
yield {
|
| 293 |
+
"role": "assistant",
|
| 294 |
+
"content": f"👋 **Welcome, {oauth_username}!** Using your HuggingFace account.\n\n",
|
| 295 |
+
}
|
| 296 |
+
|
| 297 |
+
# Advanced mode is not supported without OpenAI (which requires manual setup)
|
| 298 |
+
# For now, we only support simple mode with HuggingFace
|
| 299 |
+
if mode == "advanced":
|
| 300 |
+
yield {
|
| 301 |
+
"role": "assistant",
|
| 302 |
+
"content": (
|
| 303 |
+
"⚠️ **Warning**: Advanced mode requires OpenAI API key configuration. "
|
| 304 |
+
"Falling back to simple mode.\n\n"
|
| 305 |
+
),
|
| 306 |
+
}
|
| 307 |
+
|
| 308 |
+
# Inform user about authentication status
|
| 309 |
+
if oauth_token:
|
| 310 |
+
yield {
|
| 311 |
+
"role": "assistant",
|
| 312 |
+
"content": (
|
| 313 |
+
"🔐 **Using HuggingFace OAuth token** - "
|
| 314 |
+
"Authenticated via your HuggingFace account.\n\n"
|
| 315 |
+
),
|
| 316 |
+
}
|
| 317 |
+
elif not has_huggingface:
|
| 318 |
+
# No keys at all - will use FREE HuggingFace Inference (public models)
|
| 319 |
+
yield {
|
| 320 |
+
"role": "assistant",
|
| 321 |
+
"content": (
|
| 322 |
+
"🤗 **Free Tier**: Using HuggingFace Inference (Llama 3.1 / Mistral) for AI analysis.\n"
|
| 323 |
+
"For premium models or higher rate limits, sign in with HuggingFace above.\n\n"
|
| 324 |
+
),
|
| 325 |
+
}
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
async def handle_orchestrator_events(
|
| 329 |
+
orchestrator: Any,
|
| 330 |
+
message: str,
|
| 331 |
+
) -> AsyncGenerator[dict[str, Any], None]:
|
| 332 |
+
"""
|
| 333 |
+
Handle orchestrator events and yield ChatMessages.
|
| 334 |
+
|
| 335 |
+
Args:
|
| 336 |
+
orchestrator: The orchestrator instance
|
| 337 |
+
message: The research question
|
| 338 |
+
|
| 339 |
+
Yields:
|
| 340 |
+
ChatMessage objects from orchestrator events
|
| 341 |
+
"""
|
| 342 |
+
# Track pending accordions for real-time updates
|
| 343 |
+
pending_accordions: dict[str, str] = {} # title -> accumulated content
|
| 344 |
+
|
| 345 |
+
async for event in orchestrator.run(message):
|
| 346 |
+
# Convert event to ChatMessage with metadata
|
| 347 |
+
chat_msg = event_to_chat_message(event)
|
| 348 |
+
|
| 349 |
+
# Handle complete events (main response)
|
| 350 |
+
if event.type == "complete":
|
| 351 |
+
# Close any pending accordions first
|
| 352 |
+
if pending_accordions:
|
| 353 |
+
for title, content in pending_accordions.items():
|
| 354 |
+
yield {
|
| 355 |
+
"role": "assistant",
|
| 356 |
+
"content": content.strip(),
|
| 357 |
+
"metadata": {"title": title, "status": "done"},
|
| 358 |
+
}
|
| 359 |
+
pending_accordions.clear()
|
| 360 |
+
|
| 361 |
+
# Yield final response (no accordion for main response)
|
| 362 |
+
# chat_msg is already a dict from event_to_chat_message
|
| 363 |
+
yield chat_msg
|
| 364 |
+
continue
|
| 365 |
+
|
| 366 |
+
# Handle events with metadata (accordions)
|
| 367 |
+
# chat_msg is always a dict from event_to_chat_message
|
| 368 |
+
metadata: dict[str, Any] = chat_msg.get("metadata", {})
|
| 369 |
+
if metadata:
|
| 370 |
+
msg_title: str | None = metadata.get("title")
|
| 371 |
+
msg_status: str | None = metadata.get("status")
|
| 372 |
+
|
| 373 |
+
if msg_title:
|
| 374 |
+
# For pending operations, accumulate content and show spinner
|
| 375 |
+
if msg_status == "pending":
|
| 376 |
+
if msg_title not in pending_accordions:
|
| 377 |
+
pending_accordions[msg_title] = ""
|
| 378 |
+
# chat_msg is always a dict, so access content via key
|
| 379 |
+
content = chat_msg.get("content", "")
|
| 380 |
+
pending_accordions[msg_title] += content + "\n"
|
| 381 |
+
# Yield updated accordion with accumulated content
|
| 382 |
+
yield {
|
| 383 |
+
"role": "assistant",
|
| 384 |
+
"content": pending_accordions[msg_title].strip(),
|
| 385 |
+
"metadata": chat_msg.get("metadata", {}),
|
| 386 |
+
}
|
| 387 |
+
elif msg_title in pending_accordions:
|
| 388 |
+
# Combine pending content with final content
|
| 389 |
+
# chat_msg is always a dict, so access content via key
|
| 390 |
+
content = chat_msg.get("content", "")
|
| 391 |
+
final_content = pending_accordions[msg_title] + content
|
| 392 |
+
del pending_accordions[msg_title]
|
| 393 |
+
yield {
|
| 394 |
+
"role": "assistant",
|
| 395 |
+
"content": final_content.strip(),
|
| 396 |
+
"metadata": {"title": msg_title, "status": "done"},
|
| 397 |
+
}
|
| 398 |
+
else:
|
| 399 |
+
# New done accordion (no pending state)
|
| 400 |
+
yield chat_msg
|
| 401 |
+
else:
|
| 402 |
+
# No title, yield as-is
|
| 403 |
+
yield chat_msg
|
| 404 |
+
else:
|
| 405 |
+
# No metadata, yield as plain message
|
| 406 |
+
yield chat_msg
|
| 407 |
+
|
| 408 |
+
|
| 409 |
async def research_agent(
|
| 410 |
message: str,
|
| 411 |
history: list[dict[str, Any]],
|
| 412 |
mode: str = "simple",
|
| 413 |
+
hf_model: str | None = None,
|
| 414 |
+
hf_provider: str | None = None,
|
| 415 |
+
oauth_token: gr.OAuthToken | None = None,
|
| 416 |
+
oauth_profile: gr.OAuthProfile | None = None,
|
| 417 |
+
) -> AsyncGenerator[dict[str, Any] | list[dict[str, Any]], None]:
|
| 418 |
"""
|
| 419 |
Gradio chat function that runs the research agent.
|
| 420 |
|
|
|
|
| 422 |
message: User's research question
|
| 423 |
history: Chat history (Gradio format)
|
| 424 |
mode: Orchestrator mode ("simple" or "advanced")
|
| 425 |
+
hf_model: Selected HuggingFace model ID (from dropdown)
|
| 426 |
+
hf_provider: Selected inference provider (from dropdown)
|
| 427 |
+
oauth_token: Gradio OAuth token (None if user not logged in)
|
| 428 |
+
oauth_profile: Gradio OAuth profile (None if user not logged in)
|
| 429 |
|
| 430 |
Yields:
|
| 431 |
+
ChatMessage objects with metadata for accordion display
|
| 432 |
"""
|
| 433 |
+
# REQUIRE LOGIN BEFORE USE
|
| 434 |
+
# Extract OAuth token and username using Gradio's OAuth types
|
| 435 |
+
# According to Gradio docs: OAuthToken and OAuthProfile are None if user not logged in
|
| 436 |
+
token_value: str | None = None
|
| 437 |
+
username: str | None = None
|
| 438 |
+
|
| 439 |
+
if oauth_token is not None:
|
| 440 |
+
# OAuthToken has a .token attribute containing the access token
|
| 441 |
+
token_value = oauth_token.token if hasattr(oauth_token, "token") else None
|
| 442 |
+
|
| 443 |
+
if oauth_profile is not None:
|
| 444 |
+
# OAuthProfile has .username, .name, .profile_image attributes
|
| 445 |
+
username = (
|
| 446 |
+
oauth_profile.username
|
| 447 |
+
if hasattr(oauth_profile, "username") and oauth_profile.username
|
| 448 |
+
else (oauth_profile.name if hasattr(oauth_profile, "name") and oauth_profile.name else None)
|
| 449 |
+
)
|
| 450 |
+
|
| 451 |
+
# Check if user is logged in (OAuth token or env var)
|
| 452 |
+
# Fallback to env vars for local development or Spaces with HF_TOKEN secret
|
| 453 |
+
has_authentication = bool(
|
| 454 |
+
token_value
|
| 455 |
+
or os.getenv("HF_TOKEN")
|
| 456 |
+
or os.getenv("HUGGINGFACE_API_KEY")
|
| 457 |
+
)
|
| 458 |
+
|
| 459 |
+
if not has_authentication:
|
| 460 |
+
yield {
|
| 461 |
+
"role": "assistant",
|
| 462 |
+
"content": (
|
| 463 |
+
"🔐 **Authentication Required**\n\n"
|
| 464 |
+
"Please **sign in with HuggingFace** using the login button at the top of the page "
|
| 465 |
+
"before using this application.\n\n"
|
| 466 |
+
"The login button is required to access the AI models and research tools."
|
| 467 |
+
),
|
| 468 |
+
}
|
| 469 |
+
return
|
| 470 |
+
|
| 471 |
if not message.strip():
|
| 472 |
+
yield {
|
| 473 |
+
"role": "assistant",
|
| 474 |
+
"content": "Please enter a research question.",
|
| 475 |
+
}
|
| 476 |
return
|
| 477 |
|
| 478 |
+
# Check available keys (use token_value instead of oauth_token)
|
| 479 |
+
has_huggingface = bool(os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_API_KEY") or token_value)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 480 |
|
| 481 |
+
# Adjust mode if needed
|
| 482 |
+
effective_mode = mode
|
| 483 |
+
if mode == "advanced":
|
| 484 |
+
effective_mode = "simple"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 485 |
|
| 486 |
+
# Yield authentication and mode status messages
|
| 487 |
+
async for msg in yield_auth_messages(username, token_value, has_huggingface, mode):
|
| 488 |
+
yield msg
|
| 489 |
|
| 490 |
+
# Run the agent and stream events
|
| 491 |
try:
|
| 492 |
# use_mock=False - let configure_orchestrator decide based on available keys
|
| 493 |
+
# It will use: OAuth token > Env vars > HF Inference (free tier)
|
| 494 |
+
# Convert empty strings from Textbox to None for defaults
|
| 495 |
+
model_id = hf_model if hf_model and hf_model.strip() else None
|
| 496 |
+
provider_name = hf_provider if hf_provider and hf_provider.strip() else None
|
| 497 |
+
|
| 498 |
orchestrator, backend_name = configure_orchestrator(
|
| 499 |
use_mock=False, # Never use mock in production - HF Inference is the free fallback
|
| 500 |
+
mode=effective_mode,
|
| 501 |
+
oauth_token=token_value, # Use extracted token value
|
| 502 |
+
hf_model=model_id, # None will use defaults in configure_orchestrator
|
| 503 |
+
hf_provider=provider_name, # None will use defaults in configure_orchestrator
|
| 504 |
)
|
| 505 |
|
| 506 |
+
yield {
|
| 507 |
+
"role": "assistant",
|
| 508 |
+
"content": f"🧠 **Backend**: {backend_name}\n\n",
|
| 509 |
+
}
|
|
|
|
|
|
|
| 510 |
|
| 511 |
+
# Handle orchestrator events
|
| 512 |
+
async for msg in handle_orchestrator_events(orchestrator, message):
|
| 513 |
+
yield msg
|
|
|
|
|
|
|
|
|
|
| 514 |
|
| 515 |
except Exception as e:
|
| 516 |
+
# Return error message without metadata to avoid issues during example caching
|
| 517 |
+
# Metadata can cause validation errors when Gradio caches examples
|
| 518 |
+
# Gradio Chatbot requires plain text - remove all markdown and special characters
|
| 519 |
+
error_msg = str(e).replace("**", "").replace("*", "").replace("`", "")
|
| 520 |
+
# Ensure content is a simple string without any special formatting
|
| 521 |
+
yield {
|
| 522 |
+
"role": "assistant",
|
| 523 |
+
"content": f"Error: {error_msg}. Please check your configuration and try again.",
|
| 524 |
+
}
|
| 525 |
+
|
| 526 |
+
|
| 527 |
+
def create_demo() -> gr.Blocks:
|
| 528 |
"""
|
| 529 |
+
Create the Gradio demo interface with MCP support and OAuth login.
|
| 530 |
|
| 531 |
Returns:
|
| 532 |
+
Configured Gradio Blocks interface with MCP server and OAuth enabled
|
| 533 |
"""
|
| 534 |
+
with gr.Blocks(title="🧬 DeepCritical") as demo:
|
| 535 |
+
# Add login button at the top in a visible Row container
|
| 536 |
+
# LoginButton must be visible and properly configured for OAuth to work
|
| 537 |
+
# Using a Row with scale ensures the button is displayed prominently at the top
|
| 538 |
+
with gr.Row(equal_height=False):
|
| 539 |
+
with gr.Column(scale=1, min_width=200):
|
| 540 |
+
login_btn = gr.LoginButton(
|
| 541 |
+
value="Sign in with Hugging Face",
|
| 542 |
+
variant="huggingface",
|
| 543 |
+
size="lg",
|
| 544 |
+
)
|
| 545 |
+
|
| 546 |
+
# Create settings components (hidden - used only for additional_inputs)
|
| 547 |
+
# Model/provider selection removed to avoid dropdown value mismatch errors
|
| 548 |
+
# Settings will use defaults from configure_orchestrator
|
| 549 |
+
with gr.Row(visible=False):
|
| 550 |
+
mode_radio = gr.Radio(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 551 |
choices=["simple", "advanced"],
|
| 552 |
value="simple",
|
| 553 |
label="Orchestrator Mode",
|
| 554 |
+
info="Simple: Linear | Advanced: Multi-Agent (Requires OpenAI)",
|
| 555 |
+
)
|
| 556 |
+
|
| 557 |
+
# Hidden text components for model/provider (not dropdowns to avoid value mismatch)
|
| 558 |
+
# These will be empty by default and use defaults in configure_orchestrator
|
| 559 |
+
hf_model_dropdown = gr.Textbox(
|
| 560 |
+
value="", # Empty string - will be converted to None in research_agent
|
| 561 |
+
label="🤖 Reasoning Model",
|
| 562 |
+
visible=False, # Hidden from UI
|
| 563 |
+
)
|
| 564 |
+
|
| 565 |
+
hf_provider_dropdown = gr.Textbox(
|
| 566 |
+
value="", # Empty string - will be converted to None in research_agent
|
| 567 |
+
label="⚡ Inference Provider",
|
| 568 |
+
visible=False, # Hidden from UI
|
| 569 |
+
)
|
| 570 |
+
|
| 571 |
+
# Chat interface with model/provider selection
|
| 572 |
+
# Examples are provided but will NOT run at startup (cache_examples=False)
|
| 573 |
+
# Users must log in first before using examples or submitting queries
|
| 574 |
+
gr.ChatInterface(
|
| 575 |
+
fn=research_agent,
|
| 576 |
+
title="🧬 DeepCritical",
|
| 577 |
+
description=(
|
| 578 |
+
"*AI-Powered Drug Repurposing Agent — searches PubMed, "
|
| 579 |
+
"ClinicalTrials.gov & Europe PMC*\n\n"
|
| 580 |
+
"---\n"
|
| 581 |
+
"*Research tool only — not for medical advice.* \n"
|
| 582 |
+
"**MCP Server Active**: Connect Claude Desktop to `/gradio_api/mcp/`\n\n"
|
| 583 |
+
"**⚠️ Authentication Required**: Please **sign in with HuggingFace** above before using this application."
|
| 584 |
),
|
| 585 |
+
examples=[
|
| 586 |
+
# When additional_inputs are provided, examples must be lists of lists
|
| 587 |
+
# Each inner list: [message, mode, hf_model, hf_provider]
|
| 588 |
+
# Using actual model IDs and provider names from inference_models.py
|
| 589 |
+
# Note: Provider is optional - if empty, HF will auto-select
|
| 590 |
+
# These examples will NOT run at startup - users must click them after logging in
|
| 591 |
+
[
|
| 592 |
+
"What drugs could be repurposed for Alzheimer's disease?",
|
| 593 |
+
"simple",
|
| 594 |
+
"Qwen/Qwen3-Next-80B-A3B-Thinking",
|
| 595 |
+
"",
|
| 596 |
+
],
|
| 597 |
+
[
|
| 598 |
+
"Is metformin effective for treating cancer?",
|
| 599 |
+
"simple",
|
| 600 |
+
"Qwen/Qwen3-235B-A22B-Instruct-2507",
|
| 601 |
+
"",
|
| 602 |
+
],
|
| 603 |
+
[
|
| 604 |
+
"What medications show promise for Long COVID treatment?",
|
| 605 |
+
"simple",
|
| 606 |
+
"zai-org/GLM-4.5-Air",
|
| 607 |
+
"nebius",
|
| 608 |
+
],
|
| 609 |
+
|
| 610 |
+
],
|
| 611 |
+
cache_examples=False, # CRITICAL: Disable example caching to prevent examples from running at startup
|
| 612 |
+
# Examples will only run when user explicitly clicks them (after login)
|
| 613 |
+
additional_inputs_accordion=gr.Accordion(label="⚙️ Settings", open=True, visible=True),
|
| 614 |
+
additional_inputs=[
|
| 615 |
+
mode_radio,
|
| 616 |
+
hf_model_dropdown,
|
| 617 |
+
hf_provider_dropdown,
|
| 618 |
+
# Note: gr.OAuthToken and gr.OAuthProfile are automatically passed as function parameters
|
| 619 |
+
# when user is logged in - they should NOT be added to additional_inputs
|
| 620 |
+
],
|
| 621 |
+
)
|
| 622 |
|
| 623 |
+
return demo # type: ignore[no-any-return]
|
| 624 |
|
| 625 |
|
| 626 |
def main() -> None:
|
src/middleware/state_machine.py
CHANGED
|
@@ -127,3 +127,7 @@ def get_workflow_state() -> WorkflowState:
|
|
| 127 |
logger.debug("Workflow state not found, auto-initializing")
|
| 128 |
return init_workflow_state()
|
| 129 |
return state
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
logger.debug("Workflow state not found, auto-initializing")
|
| 128 |
return init_workflow_state()
|
| 129 |
return state
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
|
src/tools/crawl_adapter.py
CHANGED
|
@@ -56,3 +56,7 @@ async def crawl_website(starting_url: str) -> str:
|
|
| 56 |
except Exception as e:
|
| 57 |
logger.error("Crawl failed", error=str(e), url=starting_url)
|
| 58 |
return f"Error crawling website: {e!s}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
except Exception as e:
|
| 57 |
logger.error("Crawl failed", error=str(e), url=starting_url)
|
| 58 |
return f"Error crawling website: {e!s}"
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
|
src/tools/web_search_adapter.py
CHANGED
|
@@ -61,3 +61,7 @@ async def web_search(query: str) -> str:
|
|
| 61 |
except Exception as e:
|
| 62 |
logger.error("Web search failed", error=str(e), query=query)
|
| 63 |
return f"Error performing web search: {e!s}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
except Exception as e:
|
| 62 |
logger.error("Web search failed", error=str(e), query=query)
|
| 63 |
return f"Error performing web search: {e!s}"
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
|
tests/unit/middleware/__init__.py
CHANGED
|
@@ -1 +1,15 @@
|
|
| 1 |
"""Unit tests for middleware components."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
"""Unit tests for middleware components."""
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
|
tests/unit/middleware/test_budget_tracker_phase7.py
CHANGED
|
@@ -157,3 +157,17 @@ class TestIterationTokenTracking:
|
|
| 157 |
assert budget2 is not None
|
| 158 |
assert budget1.iteration_tokens[1] == 100
|
| 159 |
assert budget2.iteration_tokens[1] == 200
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
assert budget2 is not None
|
| 158 |
assert budget1.iteration_tokens[1] == 100
|
| 159 |
assert budget2.iteration_tokens[1] == 200
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
|
tests/unit/middleware/test_state_machine.py
CHANGED
|
@@ -354,3 +354,17 @@ class TestContextVarIsolation:
|
|
| 354 |
assert len(state2.evidence) == 1
|
| 355 |
assert state1.evidence[0].citation.url == "https://example.com/1"
|
| 356 |
assert state2.evidence[0].citation.url == "https://example.com/2"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 354 |
assert len(state2.evidence) == 1
|
| 355 |
assert state1.evidence[0].citation.url == "https://example.com/1"
|
| 356 |
assert state2.evidence[0].citation.url == "https://example.com/2"
|
| 357 |
+
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
|
| 370 |
+
|
tests/unit/middleware/test_workflow_manager.py
CHANGED
|
@@ -284,3 +284,17 @@ class TestWorkflowManager:
|
|
| 284 |
|
| 285 |
assert len(shared) == 1
|
| 286 |
assert shared[0].content == "Shared"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
|
| 285 |
assert len(shared) == 1
|
| 286 |
assert shared[0].content == "Shared"
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
|
tests/unit/orchestrator/__init__.py
CHANGED
|
@@ -1 +1,15 @@
|
|
| 1 |
"""Unit tests for orchestrator module."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
"""Unit tests for orchestrator module."""
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
|