DeepCritical / src /orchestrator_magentic.py
VibecoderMcSwaggins's picture
fix: address all CodeRabbit Phase 8 review feedback
f1e4e5b
raw
history blame
10.2 kB
"""Magentic-based orchestrator for DeepCritical.
NOTE: Magentic mode currently requires OpenAI API keys. The MagenticBuilder's
standard manager uses OpenAIChatClient. Anthropic support may be added when
the agent_framework provides an AnthropicChatClient.
"""
from collections.abc import AsyncGenerator
from typing import TYPE_CHECKING, Any
import structlog
if TYPE_CHECKING:
from src.services.embeddings import EmbeddingService
from agent_framework import (
MagenticAgentDeltaEvent,
MagenticAgentMessageEvent,
MagenticBuilder,
MagenticFinalResultEvent,
MagenticOrchestratorMessageEvent,
WorkflowOutputEvent,
)
from agent_framework.openai import OpenAIChatClient
from src.agents.hypothesis_agent import HypothesisAgent
from src.agents.judge_agent import JudgeAgent
from src.agents.report_agent import ReportAgent
from src.agents.search_agent import SearchAgent
from src.orchestrator import JudgeHandlerProtocol, SearchHandlerProtocol
from src.utils.config import settings
from src.utils.exceptions import ConfigurationError
from src.utils.models import AgentEvent, Evidence
logger = structlog.get_logger()
def _truncate(text: str, max_len: int = 100) -> str:
"""Truncate text with ellipsis only if needed."""
return f"{text[:max_len]}..." if len(text) > max_len else text
class MagenticOrchestrator:
"""
Magentic-based orchestrator - same API as Orchestrator.
Uses Microsoft Agent Framework's MagenticBuilder for multi-agent coordination.
Note:
Magentic mode requires OPENAI_API_KEY. The MagenticBuilder's standard
manager currently only supports OpenAI. If you have only an Anthropic
key, use the "simple" orchestrator mode instead.
"""
def __init__(
self,
search_handler: SearchHandlerProtocol,
judge_handler: JudgeHandlerProtocol,
max_rounds: int = 10,
) -> None:
self._search_handler = search_handler
self._judge_handler = judge_handler
self._max_rounds = max_rounds
self._evidence_store: dict[str, list[Evidence]] = {"current": []}
def _init_embedding_service(self) -> "EmbeddingService | None":
"""Initialize embedding service if available."""
try:
from src.services.embeddings import get_embedding_service
service = get_embedding_service()
logger.info("Embedding service enabled")
return service
except ImportError:
logger.info("Embedding service not available (dependencies missing)")
except Exception as e:
logger.warning("Failed to initialize embedding service", error=str(e))
return None
def _build_workflow(
self,
search_agent: SearchAgent,
hypothesis_agent: HypothesisAgent,
judge_agent: JudgeAgent,
report_agent: ReportAgent,
) -> Any:
"""Build the Magentic workflow with participants."""
if not settings.openai_api_key:
raise ConfigurationError(
"Magentic mode requires OPENAI_API_KEY. "
"Set the key or use mode='simple' with Anthropic."
)
return (
MagenticBuilder()
.participants(
searcher=search_agent,
hypothesizer=hypothesis_agent,
judge=judge_agent,
reporter=report_agent,
)
.with_standard_manager(
chat_client=OpenAIChatClient(
model_id=settings.openai_model, api_key=settings.openai_api_key
),
max_round_count=self._max_rounds,
max_stall_count=3,
max_reset_count=2,
)
.build()
)
def _format_task(self, query: str, has_embeddings: bool) -> str:
"""Format the task instruction for the manager."""
semantic_note = ""
if has_embeddings:
semantic_note = """
The system has semantic search enabled. When evidence is found:
1. Related concepts will be automatically surfaced
2. Duplicates are removed by meaning, not just URL
3. Use the surfaced related concepts to refine searches
"""
return f"""Research drug repurposing opportunities for: {query}
{semantic_note}
Workflow:
1. SearcherAgent: Find initial evidence from PubMed and web. SEND ONLY A SIMPLE KEYWORD QUERY.
2. HypothesisAgent: Generate mechanistic hypotheses (Drug -> Target -> Pathway -> Effect).
3. SearcherAgent: Use hypothesis-suggested queries for targeted search.
4. JudgeAgent: Evaluate if evidence supports hypotheses.
5. If sufficient -> ReportAgent: Generate structured research report.
6. If not sufficient -> Repeat from step 1 with refined queries.
Focus on:
- Identifying specific molecular targets
- Understanding mechanism of action
- Finding supporting/contradicting evidence for hypotheses
The final output should be a complete research report with:
- Executive summary
- Methodology
- Hypotheses tested
- Mechanistic and clinical findings
- Drug candidates
- Limitations
- Conclusion with references
"""
async def run(self, query: str) -> AsyncGenerator[AgentEvent, None]:
"""
Run the Magentic workflow - same API as simple Orchestrator.
Yields AgentEvent objects for real-time UI updates.
"""
logger.info("Starting Magentic orchestrator", query=query)
yield AgentEvent(
type="started",
message=f"Starting research (Magentic mode): {query}",
iteration=0,
)
# Initialize services and agents
embedding_service = self._init_embedding_service()
search_agent = SearchAgent(
self._search_handler, self._evidence_store, embedding_service=embedding_service
)
judge_agent = JudgeAgent(self._judge_handler, self._evidence_store)
hypothesis_agent = HypothesisAgent(
self._evidence_store, embedding_service=embedding_service
)
report_agent = ReportAgent(self._evidence_store, embedding_service=embedding_service)
# Build workflow and task
workflow = self._build_workflow(search_agent, hypothesis_agent, judge_agent, report_agent)
task = self._format_task(query, embedding_service is not None)
iteration = 0
try:
async for event in workflow.run_stream(task):
agent_event = self._process_event(event, iteration)
if agent_event:
if isinstance(event, MagenticAgentMessageEvent):
iteration += 1
yield agent_event
except Exception as e:
logger.error("Magentic workflow failed", error=str(e))
yield AgentEvent(
type="error",
message=f"Workflow error: {e!s}",
iteration=iteration,
)
def _process_event(self, event: Any, iteration: int) -> AgentEvent | None:
"""Process a workflow event and return an AgentEvent if applicable."""
if isinstance(event, MagenticOrchestratorMessageEvent):
message_text = (
event.message.text if event.message and hasattr(event.message, "text") else ""
)
kind = getattr(event, "kind", "manager")
if message_text:
return AgentEvent(
type="judging",
message=f"Manager ({kind}): {_truncate(message_text)}",
iteration=iteration,
)
elif isinstance(event, MagenticAgentMessageEvent):
agent_name = event.agent_id or "unknown"
msg_text = (
event.message.text if event.message and hasattr(event.message, "text") else ""
)
return self._agent_message_event(agent_name, msg_text, iteration + 1)
elif isinstance(event, MagenticFinalResultEvent):
final_text = (
event.message.text
if event.message and hasattr(event.message, "text")
else "No result"
)
return AgentEvent(
type="complete",
message=final_text,
data={"iterations": iteration},
iteration=iteration,
)
elif isinstance(event, MagenticAgentDeltaEvent):
if event.text:
return AgentEvent(
type="streaming",
message=event.text,
data={"agent_id": event.agent_id},
iteration=iteration,
)
elif isinstance(event, WorkflowOutputEvent):
if event.data:
return AgentEvent(
type="complete",
message=str(event.data),
iteration=iteration,
)
return None
def _agent_message_event(self, agent_name: str, msg_text: str, iteration: int) -> AgentEvent:
"""Create an AgentEvent for an agent message."""
if "search" in agent_name.lower():
return AgentEvent(
type="search_complete",
message=f"Search agent: {_truncate(msg_text)}",
iteration=iteration,
)
elif "hypothes" in agent_name.lower():
return AgentEvent(
type="hypothesizing",
message=f"Hypothesis agent: {_truncate(msg_text)}",
iteration=iteration,
)
elif "judge" in agent_name.lower():
return AgentEvent(
type="judge_complete",
message=f"Judge agent: {_truncate(msg_text)}",
iteration=iteration,
)
elif "report" in agent_name.lower():
return AgentEvent(
type="synthesizing",
message=f"Report agent: {_truncate(msg_text)}" if msg_text else "Report generated.",
iteration=iteration,
)
return AgentEvent(
type="judging",
message=f"{agent_name}: {_truncate(msg_text)}",
iteration=iteration,
)