DataMine commited on
Commit
98f12ec
·
verified ·
1 Parent(s): 5fb8816

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +42 -0
  2. performance.h5 +3 -0
  3. requirements.txt +4 -0
app.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import joblib
3
+ import streamlit as st
4
+
5
+ #loading the model
6
+ model = joblib.load("performance.h5")
7
+
8
+ def predict_marks(Hours_Studied,Previous_Scores,Extracurricular_Activities,Sleep_Hours,Sample_Question_Papers_Practiced):
9
+ "predict the student marks based on the input data"
10
+ input_data = np.array([[Hours_Studied,Previous_Scores,Extracurricular_Activities,Sleep_Hours,Sample_Question_Papers_Practiced]])
11
+ prediction = model.predict(input_data)
12
+ prediction = round(float(prediction),2)
13
+
14
+ if prediction >100:
15
+ prediction = 100
16
+ return prediction
17
+
18
+ def main():
19
+
20
+ st.title("Student Performance marks")
21
+
22
+ # input data
23
+ Hours_Studied = st.number_input("Enter no. of Hours you studied",min_value=0.0,max_value=10.0,value=0.0)
24
+ Previous_Scores = st.number_input("Enter your previous exam score",min_value=0.0,max_value=100.0,value=0.0)
25
+ Extracurricular_Activities = st.number_input("Enter your Extra activities",min_value=0.0,max_value=10.0,value=0.0)
26
+ Sleep_Hours = st.number_input("Enter no. of hours you slept",min_value=0.0,max_value=12.0,value=0.0)
27
+ Sample_Question_Papers_Practiced = st.number_input("Enter no. of sample questions you practiced",min_value=0.0,max_value=50.0,value=0.0)
28
+
29
+ if st.button("Predict your marks"):
30
+ prediction = predict_marks(Hours_Studied,Previous_Scores,Extracurricular_Activities,Sleep_Hours,Sample_Question_Papers_Practiced)
31
+
32
+ #Displat the result
33
+ if prediction >=90:
34
+ st.balloons()
35
+ st.success(f"Congralution you have high chances to pass by {prediction} marks")
36
+ elif prediction>=35:
37
+ st.warning(f"you have to work hard you have chances to score with {prediction} marks")
38
+ else:
39
+ st.error(f"you have high chances of failing with {prediction} marks")
40
+
41
+ if __name__ == "__main__":
42
+ main()
performance.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0032adf07e82dac858c025329d46bd909d57cffee9b0c356e1ed0872a4e80adb
3
+ size 1040
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ joblib
2
+ streamlit
3
+ numpy
4
+ scikit-learn