Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -10,6 +10,7 @@ app = FastAPI()
|
|
10 |
model_name = "EleutherAI/gpt-neo-1.3B" # Replace with your desired model
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
model.to(device)
|
15 |
|
@@ -20,45 +21,60 @@ async def predict(request: Request):
|
|
20 |
if not prompt:
|
21 |
return {"error": "Prompt is required"}
|
22 |
|
23 |
-
# Tokenize the input
|
24 |
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
25 |
input_ids = inputs.input_ids
|
26 |
attention_mask = inputs.attention_mask
|
27 |
|
28 |
def token_generator():
|
|
|
|
|
|
|
|
|
29 |
temperature = 0.7
|
30 |
top_p = 0.9
|
|
|
31 |
|
32 |
-
for _ in range(
|
33 |
-
with torch.no_grad():
|
|
|
34 |
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
35 |
next_token_logits = outputs.logits[:, -1, :]
|
36 |
|
37 |
-
#
|
38 |
next_token_logits = next_token_logits / temperature
|
|
|
|
|
39 |
next_token_probs = F.softmax(next_token_logits, dim=-1)
|
40 |
|
41 |
-
# Apply nucleus
|
42 |
sorted_probs, sorted_indices = torch.sort(next_token_probs, descending=True)
|
43 |
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
|
44 |
-
sorted_probs = sorted_probs[cumulative_probs <= top_p]
|
45 |
-
sorted_indices = sorted_indices[:len(sorted_probs)]
|
46 |
|
47 |
-
#
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
50 |
else:
|
51 |
-
|
|
|
|
|
52 |
|
53 |
-
# Append the new token to
|
54 |
-
input_ids = torch.cat([input_ids, next_token_id
|
55 |
|
56 |
# Decode and yield the token
|
57 |
token = tokenizer.decode(next_token_id.squeeze(), skip_special_tokens=True)
|
58 |
yield token + " "
|
59 |
|
60 |
-
# Stop if
|
61 |
-
if
|
62 |
-
|
|
|
63 |
|
|
|
64 |
return StreamingResponse(token_generator(), media_type="text/plain")
|
|
|
10 |
model_name = "EleutherAI/gpt-neo-1.3B" # Replace with your desired model
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
13 |
+
|
14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
model.to(device)
|
16 |
|
|
|
21 |
if not prompt:
|
22 |
return {"error": "Prompt is required"}
|
23 |
|
24 |
+
# Tokenize the input and move to correct device
|
25 |
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
26 |
input_ids = inputs.input_ids
|
27 |
attention_mask = inputs.attention_mask
|
28 |
|
29 |
def token_generator():
|
30 |
+
# Use nonlocal to allow reassigning input_ids inside the nested function
|
31 |
+
nonlocal input_ids
|
32 |
+
|
33 |
+
# Sampling parameters
|
34 |
temperature = 0.7
|
35 |
top_p = 0.9
|
36 |
+
max_new_tokens = 30
|
37 |
|
38 |
+
for _ in range(max_new_tokens):
|
39 |
+
with torch.no_grad():
|
40 |
+
# Forward pass
|
41 |
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
42 |
next_token_logits = outputs.logits[:, -1, :]
|
43 |
|
44 |
+
# Temperature scaling
|
45 |
next_token_logits = next_token_logits / temperature
|
46 |
+
|
47 |
+
# Convert logits to probabilities
|
48 |
next_token_probs = F.softmax(next_token_logits, dim=-1)
|
49 |
|
50 |
+
# Apply nucleus (top-p) sampling
|
51 |
sorted_probs, sorted_indices = torch.sort(next_token_probs, descending=True)
|
52 |
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
|
|
|
|
|
53 |
|
54 |
+
# Filter out tokens above the top_p threshold
|
55 |
+
valid_indices = cumulative_probs <= top_p
|
56 |
+
filtered_probs = sorted_probs[valid_indices]
|
57 |
+
filtered_indices = sorted_indices[valid_indices]
|
58 |
+
|
59 |
+
if len(filtered_probs) == 0:
|
60 |
+
# Fallback to greedy if no tokens meet top_p
|
61 |
+
next_token_id = torch.argmax(next_token_probs).unsqueeze(-1)
|
62 |
else:
|
63 |
+
# Sample from the filtered distribution
|
64 |
+
sampled_id = torch.multinomial(filtered_probs, num_samples=1)
|
65 |
+
next_token_id = filtered_indices[sampled_id].unsqueeze(-1)
|
66 |
|
67 |
+
# Append the new token to our running sequence
|
68 |
+
input_ids = torch.cat([input_ids, next_token_id], dim=-1)
|
69 |
|
70 |
# Decode and yield the token
|
71 |
token = tokenizer.decode(next_token_id.squeeze(), skip_special_tokens=True)
|
72 |
yield token + " "
|
73 |
|
74 |
+
# Stop if EOS token is generated
|
75 |
+
if tokenizer.eos_token_id is not None:
|
76 |
+
if next_token_id.squeeze().item() == tokenizer.eos_token_id:
|
77 |
+
break
|
78 |
|
79 |
+
# Return the streaming response
|
80 |
return StreamingResponse(token_generator(), media_type="text/plain")
|