Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
from fastapi import FastAPI, Request
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
from fastapi.responses import StreamingResponse
|
|
|
4 |
import torch
|
|
|
5 |
|
6 |
app = FastAPI()
|
7 |
|
@@ -9,6 +10,8 @@ app = FastAPI()
|
|
9 |
model_name = "EleutherAI/gpt-neo-1.3B" # Replace with your desired model
|
10 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
|
|
12 |
|
13 |
@app.get("/")
|
14 |
def read_root():
|
@@ -22,22 +25,49 @@ async def predict(request: Request):
|
|
22 |
return {"error": "Prompt is required"}
|
23 |
|
24 |
# Tokenize the input
|
25 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(
|
|
|
|
|
26 |
|
27 |
# Generator function to stream tokens
|
28 |
def token_generator():
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
return StreamingResponse(token_generator(), media_type="text/plain")
|
|
|
1 |
from fastapi import FastAPI, Request
|
|
|
2 |
from fastapi.responses import StreamingResponse
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
|
7 |
app = FastAPI()
|
8 |
|
|
|
10 |
model_name = "EleutherAI/gpt-neo-1.3B" # Replace with your desired model
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
model.to(device)
|
15 |
|
16 |
@app.get("/")
|
17 |
def read_root():
|
|
|
25 |
return {"error": "Prompt is required"}
|
26 |
|
27 |
# Tokenize the input
|
28 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
29 |
+
input_ids = inputs.input_ids
|
30 |
+
attention_mask = inputs.attention_mask
|
31 |
|
32 |
# Generator function to stream tokens
|
33 |
def token_generator():
|
34 |
+
temperature = 0.7
|
35 |
+
top_p = 0.9
|
36 |
+
|
37 |
+
for _ in range(100): # Limit the number of generated tokens
|
38 |
+
# Get the model outputs
|
39 |
+
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
40 |
+
next_token_logits = outputs.logits[:, -1, :] # Logits for the last token
|
41 |
+
|
42 |
+
# Apply temperature scaling
|
43 |
+
next_token_logits = next_token_logits / temperature
|
44 |
+
|
45 |
+
# Convert logits to probabilities
|
46 |
+
next_token_probs = F.softmax(next_token_logits, dim=-1)
|
47 |
+
|
48 |
+
# Apply top-p nucleus sampling
|
49 |
+
sorted_probs, sorted_indices = torch.sort(next_token_probs, descending=True)
|
50 |
+
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
|
51 |
+
sorted_probs = sorted_probs[cumulative_probs <= top_p]
|
52 |
+
sorted_indices = sorted_indices[:len(sorted_probs)]
|
53 |
+
|
54 |
+
# Sample from the filtered distribution
|
55 |
+
if len(sorted_probs) > 0:
|
56 |
+
next_token_id = sorted_indices[torch.multinomial(sorted_probs, 1)]
|
57 |
+
else:
|
58 |
+
# Fallback to greedy selection if no tokens meet top-p
|
59 |
+
next_token_id = torch.argmax(next_token_probs)
|
60 |
+
|
61 |
+
# Append the generated token to the input
|
62 |
+
input_ids = torch.cat([input_ids, next_token_id.unsqueeze(-1)], dim=-1)
|
63 |
+
|
64 |
+
# Decode the token and yield it
|
65 |
+
token = tokenizer.decode(next_token_id.squeeze(), skip_special_tokens=True)
|
66 |
+
yield token + " "
|
67 |
+
|
68 |
+
# Stop if the model generates the end-of-sequence token
|
69 |
+
if next_token_id.squeeze().item() == tokenizer.eos_token_id:
|
70 |
+
break
|
71 |
+
|
72 |
+
# Return the generator as a streaming response
|
73 |
return StreamingResponse(token_generator(), media_type="text/plain")
|