Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
| import numpy as np | |
| from scipy.special import softmax | |
| import csv | |
| import urllib.request | |
| # Preprocess text (username and link placeholders) | |
| def preprocess(text): | |
| new_text = [] | |
| for t in text.split(" "): | |
| t = '@user' if t.startswith('@') and len(t) > 1 else t | |
| t = 'http' if t.startswith('http') else t | |
| new_text.append(t) | |
| return " ".join(new_text) | |
| def classify_text(text): | |
| # Tasks: emoji, emotion, hate, irony, offensive, sentiment | |
| # stance/abortion, stance/atheism, stance/climate, stance/feminist, stance/hillary | |
| task = 'emoji' | |
| MODEL = f"cardiffnlp/twitter-roberta-base-{task}" | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL) | |
| # Download label mapping | |
| labels = [] | |
| mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt" | |
| with urllib.request.urlopen(mapping_link) as f: | |
| html = f.read().decode('utf-8').split("\n") | |
| csvreader = csv.reader(html, delimiter='\t') | |
| labels = [row[1] for row in csvreader if len(row) > 1] | |
| # Load model | |
| model = AutoModelForSequenceClassification.from_pretrained(MODEL) | |
| text = preprocess(text) | |
| encoded_input = tokenizer(text, return_tensors='pt') | |
| output = model(**encoded_input) | |
| scores = output.logits[0].detach().numpy() | |
| scores = softmax(scores) | |
| ranking = np.argsort(scores) | |
| ranking = ranking[::-1] | |
| results = [] | |
| for i in range(scores.shape[0]): | |
| label = labels[ranking[i]] | |
| score = scores[ranking[i]] | |
| result = f"{i+1}) {label} {np.round(float(score), 4)}" | |
| results.append(result) | |
| return results | |
| iface = gr.Interface( | |
| fn=classify_text, | |
| inputs="text", | |
| outputs="text", | |
| title="Text Classification", | |
| description="Classify the text into different categories.", | |
| example="Looking forward to Christmas" | |
| ) | |
| iface.launch() | |