Spaces:
Runtime error
Runtime error
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""TODO: Add a description here.""" | |
import evaluate | |
import datasets | |
# TODO: Add BibTeX citation | |
_CITATION = """\ | |
@InProceedings{huggingface:module, | |
title = {A great new module}, | |
authors={huggingface, Inc.}, | |
year={2020} | |
} | |
""" | |
# TODO: Add description of the module here | |
_DESCRIPTION = """\ | |
This new module is designed to solve this great ML task and is crafted with a lot of care. | |
""" | |
# TODO: Add description of the arguments of the module here | |
_KWARGS_DESCRIPTION = """ | |
Calculates how good are predictions given some references, using certain scores | |
Args: | |
predictions: list of predictions to score. Each predictions | |
should be a string with tokens separated by spaces. | |
references: list of reference for each prediction. Each | |
reference should be a string with tokens separated by spaces. | |
Returns: | |
accuracy: description of the first score, | |
another_score: description of the second score, | |
Examples: | |
Examples should be written in doctest format, and should illustrate how | |
to use the function. | |
>>> metric = evaluate.load("DarrenChensformer/aciton_generation") | |
>>> results = metric.compute(references=[0, 1], predictions=[0, 1]) | |
>>> print(results) | |
{'accuracy': 1.0} | |
""" | |
# TODO: Define external resources urls if needed | |
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt" | |
VALID_LABELS = [ | |
"/開箱", | |
"/教學", | |
"/表達", | |
"/分享/外部資訊", | |
"/分享/個人資訊", | |
"/推薦/產品", | |
"/推薦/服務", | |
"/推薦/其他", | |
"" | |
] | |
class BaseEvaluater: | |
eps = 1e-8 | |
valid_labels = None | |
def __call__(self, preds, labels): | |
return self._compute(preds, labels) | |
def _compute(self, preds, labels): | |
# calculate precision, recall, f1 | |
tp, fp, fn = 0, 0, 0 | |
for pred, label in zip(preds, labels): | |
tp += len(set(pred) & set(label)) | |
fp += len(set(pred) - set(label)) | |
fn += len(set(label) - set(pred)) | |
precision = tp / (tp + fp + self.eps) | |
recall = tp / (tp + fn + self.eps) | |
f1 = 2 * precision * recall / (precision + recall + self.eps) | |
return { | |
"precision": round(precision, 4), | |
"recall": round(recall, 4), | |
"f1": round(f1, 4) | |
} | |
def _init_valid_labels(self): | |
if self.valid_labels is None: | |
self.valid_labels = VALID_LABELS | |
class ClassEvaluater(BaseEvaluater): | |
def __init__(self, valid_labels=None): | |
self.valid_labels = valid_labels | |
self._init_valid_labels() | |
def __call__(self, preds, labels): | |
preds = map(self.extract_class, preds) | |
labels = map(self.extract_class, labels) | |
# helper function to extract valid tags | |
preds = list(map(self.extract_valid, preds)) | |
labels = list(map(self.extract_valid, labels)) | |
return self._compute(preds, labels) | |
def extract_valid(self, tags): | |
tags = list(filter(lambda tag: tag in self.valid_labels, tags)) | |
return tags | |
def extract_class(self, tags): | |
tags = map(lambda tag: tag.replace("/ ", "/"), tags) | |
tags = list(map(self.batch_extract_class, tags)) | |
# deduplicate | |
tags = list(dict.fromkeys(tags)) | |
return tags | |
def batch_extract_class(self, tag): | |
# filter out invalid tags | |
tag = tag.split('/') | |
if len(tag)==3: | |
_class = '/'.join(tag[:2]) | |
elif len(tag)==4: | |
_class = '/'.join(tag[:3]) | |
elif len(tag)==1: | |
_class = '' | |
else: | |
_class = None | |
if _class in self.valid_labels: | |
return _class | |
else: | |
return "" | |
class PhraseEvaluater(BaseEvaluater): | |
def __init__(self, valid_labels=None): | |
self.valid_labels = valid_labels | |
self._init_valid_labels() | |
def __call__(self, preds, labels): | |
preds = map(self.extract_phrase, preds) | |
labels = map(self.extract_phrase, labels) | |
return self._compute(preds, labels) | |
def extract_phrase(self, tags): | |
tags = map(lambda tag: tag.replace("/ ", "/"), tags) | |
tags = list(map(self.batch_extract_phrase, tags)) | |
# deduplicate | |
tags = list(dict.fromkeys(tags)) | |
return tags | |
def batch_extract_phrase(self, phrase): | |
# filter out invalid tags | |
tag = phrase.split('/') | |
if len(tag)==3: | |
_class = '/'.join(tag[:2]) | |
elif len(tag)==4: | |
_class = '/'.join(tag[:3]) | |
elif len(tag)==1: | |
_class = '' | |
else: | |
_class = None | |
if _class in self.valid_labels: | |
return phrase.replace(_class, '') | |
else: | |
return "" | |
class action_generation(evaluate.Metric): | |
"""TODO: Short description of my evaluation module.""" | |
def _info(self): | |
# TODO: Specifies the evaluate.EvaluationModuleInfo object | |
return evaluate.MetricInfo( | |
# This is the description that will appear on the modules page. | |
module_type="metric", | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
inputs_description=_KWARGS_DESCRIPTION, | |
# This defines the format of each prediction and reference | |
features=datasets.Features({ | |
'predictions': datasets.Sequence(datasets.Value('string')), | |
'references': datasets.Sequence(datasets.Value('string')), | |
}), | |
# Homepage of the module for documentation | |
homepage="http://module.homepage", | |
# Additional links to the codebase or references | |
codebase_urls=["http://github.com/path/to/codebase/of/new_module"], | |
reference_urls=["http://path.to.reference.url/new_module"] | |
) | |
def _download_and_prepare(self, dl_manager): | |
"""Optional: download external resources useful to compute the scores""" | |
# TODO: Download external resources if needed | |
pass | |
def _compute(self, predictions, references, | |
valid_labels=None, detailed_scores=False, | |
weights={"class": 0.8, "phrase": 0.2} | |
): | |
"""Returns the scores""" | |
class_eval = ClassEvaluater(valid_labels)(predictions, references) | |
phrase_eval = PhraseEvaluater(valid_labels)(predictions, references) | |
weight_sum = { | |
key: round((class_eval[key] * weights["class"]) + (phrase_eval[key] * weights["phrase"]), 4) | |
for key in class_eval | |
} | |
if detailed_scores: | |
results = { | |
"class": class_eval, | |
"phrase": phrase_eval, | |
"weighted_sum": weight_sum | |
} | |
else: | |
results = weight_sum | |
return results | |