Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2024 Google AI and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" PyTorch Siglip model. """ | |
# Copied from HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit and add tgt_sizes | |
import os | |
import math | |
import warnings | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn.init import _calculate_fan_in_and_fan_out | |
from transformers.activations import ACT2FN | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.configuration_utils import PretrainedConfig | |
from transformers.utils import ( | |
logging, | |
) | |
from transformers.utils import logging | |
logger = logging.get_logger(__name__) | |
class SiglipVisionConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a | |
Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a | |
configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip | |
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
intermediate_size (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
num_channels (`int`, *optional*, defaults to 3): | |
Number of channels in the input images. | |
image_size (`int`, *optional*, defaults to 224): | |
The size (resolution) of each image. | |
patch_size (`int`, *optional*, defaults to 16): | |
The size (resolution) of each patch. | |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-06): | |
The epsilon used by the layer normalization layers. | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
Example: | |
```python | |
>>> from transformers import SiglipVisionConfig, SiglipVisionModel | |
>>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration | |
>>> configuration = SiglipVisionConfig() | |
>>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration | |
>>> model = SiglipVisionModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "siglip_vision_model" | |
def __init__( | |
self, | |
hidden_size=768, | |
intermediate_size=3072, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
num_channels=3, | |
image_size=224, | |
patch_size=16, | |
hidden_act="gelu_pytorch_tanh", | |
layer_norm_eps=1e-6, | |
attention_dropout=0.0, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.num_channels = num_channels | |
self.patch_size = patch_size | |
self.image_size = image_size | |
self.attention_dropout = attention_dropout | |
self.layer_norm_eps = layer_norm_eps | |
self.hidden_act = hidden_act | |
_CHECKPOINT_FOR_DOC = "google/siglip-base-patch16-224" | |
SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"google/siglip-base-patch16-224", | |
# See all SigLIP models at https://huggingface.co/models?filter=siglip | |
] | |
# Copied from transformers.models.llama.modeling_llama._get_unpad_data | |
def _get_unpad_data(attention_mask): | |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | |
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | |
max_seqlen_in_batch = seqlens_in_batch.max().item() | |
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) | |
return ( | |
indices, | |
cu_seqlens, | |
max_seqlen_in_batch, | |
) | |
def _trunc_normal_(tensor, mean, std, a, b): | |
# Cut & paste from PyTorch official master until it's in a few official releases - RW | |
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf | |
def norm_cdf(x): | |
# Computes standard normal cumulative distribution function | |
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 | |
if (mean < a - 2 * std) or (mean > b + 2 * std): | |
warnings.warn( | |
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " | |
"The distribution of values may be incorrect.", | |
stacklevel=2, | |
) | |
# Values are generated by using a truncated uniform distribution and | |
# then using the inverse CDF for the normal distribution. | |
# Get upper and lower cdf values | |
l = norm_cdf((a - mean) / std) | |
u = norm_cdf((b - mean) / std) | |
# Uniformly fill tensor with values from [l, u], then translate to | |
# [2l-1, 2u-1]. | |
tensor.uniform_(2 * l - 1, 2 * u - 1) | |
# Use inverse cdf transform for normal distribution to get truncated | |
# standard normal | |
if tensor.dtype in [torch.float16, torch.bfloat16]: | |
# The `erfinv_` op is not (yet?) defined in float16+cpu, bfloat16+gpu | |
og_dtype = tensor.dtype | |
tensor = tensor.to(torch.float32) | |
tensor.erfinv_() | |
tensor = tensor.to(og_dtype) | |
else: | |
tensor.erfinv_() | |
# Transform to proper mean, std | |
tensor.mul_(std * math.sqrt(2.0)) | |
tensor.add_(mean) | |
# Clamp to ensure it's in the proper range | |
if tensor.dtype == torch.float16: | |
# The `clamp_` op is not (yet?) defined in float16+cpu | |
tensor = tensor.to(torch.float32) | |
tensor.clamp_(min=a, max=b) | |
tensor = tensor.to(torch.float16) | |
else: | |
tensor.clamp_(min=a, max=b) | |
def trunc_normal_tf_( | |
tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0 | |
): | |
"""Fills the input Tensor with values drawn from a truncated | |
normal distribution. The values are effectively drawn from the | |
normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)` | |
with values outside :math:`[a, b]` redrawn until they are within | |
the bounds. The method used for generating the random values works | |
best when :math:`a \\leq \text{mean} \\leq b`. | |
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the | |
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0 | |
and the result is subsquently scaled and shifted by the mean and std args. | |
Args: | |
tensor: an n-dimensional `torch.Tensor` | |
mean: the mean of the normal distribution | |
std: the standard deviation of the normal distribution | |
a: the minimum cutoff value | |
b: the maximum cutoff value | |
""" | |
with torch.no_grad(): | |
_trunc_normal_(tensor, 0, 1.0, a, b) | |
tensor.mul_(std).add_(mean) | |
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"): | |
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) | |
denom = fan_in | |
if mode == "fan_in": | |
denom = fan_in | |
elif mode == "fan_out": | |
denom = fan_out | |
elif mode == "fan_avg": | |
denom = (fan_in + fan_out) / 2 | |
variance = scale / denom | |
if distribution == "truncated_normal": | |
# constant is stddev of standard normal truncated to (-2, 2) | |
trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978) | |
elif distribution == "normal": | |
with torch.no_grad(): | |
tensor.normal_(std=math.sqrt(variance)) | |
elif distribution == "uniform": | |
bound = math.sqrt(3 * variance) | |
with torch.no_grad(): | |
tensor.uniform_(-bound, bound) | |
else: | |
raise ValueError(f"invalid distribution {distribution}") | |
def lecun_normal_(tensor): | |
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal") | |
def default_flax_embed_init(tensor): | |
variance_scaling_(tensor, mode="fan_in", distribution="normal") | |
class SiglipVisionEmbeddings(nn.Module): | |
def __init__(self, config: SiglipVisionConfig): | |
super().__init__() | |
self.config = config | |
self.embed_dim = config.hidden_size | |
self.image_size = config.image_size | |
self.patch_size = config.patch_size | |
self.patch_embedding = nn.Conv2d( | |
in_channels=config.num_channels, | |
out_channels=self.embed_dim, | |
kernel_size=self.patch_size, | |
stride=self.patch_size, | |
padding="valid", | |
) | |
self.num_patches_per_side = self.image_size // self.patch_size | |
self.num_patches = self.num_patches_per_side**2 | |
self.num_positions = self.num_patches | |
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) | |
class SiglipAttention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
# Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__ | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.embed_dim = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.head_dim = self.embed_dim // self.num_heads | |
if self.head_dim * self.num_heads != self.embed_dim: | |
raise ValueError( | |
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" | |
f" {self.num_heads})." | |
) | |
self.scale = self.head_dim**-0.5 | |
self.dropout = config.attention_dropout | |
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip | |
class SiglipMLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.activation_fn = ACT2FN[config.hidden_act] | |
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) | |
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) | |
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Siglip | |
class SiglipEncoderLayer(nn.Module): | |
def __init__(self, config: SiglipVisionConfig): | |
super().__init__() | |
self.embed_dim = config.hidden_size | |
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" | |
self.self_attn = ( | |
SiglipAttention(config) | |
) | |
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
self.mlp = SiglipMLP(config) | |
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
class SiglipPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = SiglipVisionConfig | |
base_model_prefix = "siglip" | |
supports_gradient_checkpointing = True | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
if isinstance(module, SiglipVisionEmbeddings): | |
width = self.config.hidden_size | |
nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width)) | |
elif isinstance(module, nn.Embedding): | |
default_flax_embed_init(module.weight) | |
elif isinstance(module, SiglipAttention): | |
nn.init.normal_(module.q_proj.weight) | |
nn.init.normal_(module.k_proj.weight) | |
nn.init.normal_(module.v_proj.weight) | |
nn.init.normal_(module.out_proj.weight) | |
nn.init.zeros_(module.q_proj.bias) | |
nn.init.zeros_(module.k_proj.bias) | |
nn.init.zeros_(module.v_proj.bias) | |
nn.init.zeros_(module.out_proj.bias) | |
elif isinstance(module, SiglipMLP): | |
nn.init.normal_(module.fc1.weight) | |
nn.init.normal_(module.fc2.weight) | |
nn.init.normal_(module.fc1.bias, std=1e-6) | |
nn.init.normal_(module.fc2.bias, std=1e-6) | |
elif isinstance(module, (nn.Linear, nn.Conv2d)): | |
lecun_normal_(module.weight) | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
SIGLIP_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`SiglipVisionConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
SIGLIP_VISION_INPUTS_DOCSTRING = r""" | |
Args: | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using | |
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip | |
class SiglipEncoder(nn.Module): | |
""" | |
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a | |
[`SiglipEncoderLayer`]. | |
Args: | |
config: SiglipConfig | |
""" | |
def __init__(self, config: SiglipVisionConfig): | |
super().__init__() | |
self.config = config | |
self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.gradient_checkpointing = False | |
class SiglipVisionTransformer(SiglipPreTrainedModel): | |
config_class = SiglipVisionConfig | |
main_input_name = "pixel_values" | |
_supports_flash_attn_2 = True | |
def __init__(self, config: SiglipVisionConfig): | |
super().__init__(config) | |
self.config = config | |
embed_dim = config.hidden_size | |
self.embeddings = SiglipVisionEmbeddings(config) | |
self.encoder = SiglipEncoder(config) | |
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | |
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self) -> nn.Module: | |
return self.embeddings.patch_embedding | |
import argparse | |
import json | |
import re | |
import numpy as np | |
from gguf import * | |
from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer, Idefics2VisionConfig | |
TEXT = "clip.text" | |
VISION = "clip.vision" | |
def add_key_str(raw_key: str, arch: str) -> str: | |
return raw_key.format(arch=arch) | |
def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_minicpmv: bool) -> bool: | |
if name in ( | |
"logit_scale", | |
"text_model.embeddings.position_ids", | |
"vision_model.embeddings.position_ids", | |
): | |
return True | |
if has_minicpmv and name in ["visual_projection.weight"]: | |
return True | |
if name.startswith("v") and not has_vision: | |
return True | |
if name.startswith("t") and not has_text: | |
return True | |
return False | |
def get_tensor_name(name: str) -> str: | |
if "projection" in name: | |
return name | |
if "mm_projector" in name: | |
name = name.replace("model.mm_projector", "mm") | |
name = re.sub(r'mm\.mlp\.mlp', 'mm.model.mlp', name, count=1) | |
name = re.sub(r'mm\.peg\.peg', 'mm.model.peg', name, count=1) | |
return name | |
return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln") | |
def bytes_to_unicode(): | |
""" | |
Returns list of utf-8 byte and a corresponding list of unicode strings. | |
The reversible bpe codes work on unicode strings. | |
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. | |
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. | |
This is a significant percentage of your normal, say, 32K bpe vocab. | |
To avoid that, we want lookup tables between utf-8 bytes and unicode strings. | |
And avoids mapping to whitespace/control characters the bpe code barfs on. | |
""" | |
bs = ( | |
list(range(ord("!"), ord("~") + 1)) | |
+ list(range(ord("¡"), ord("¬") + 1)) | |
+ list(range(ord("®"), ord("ÿ") + 1)) | |
) | |
cs = bs[:] | |
n = 0 | |
for b in range(2**8): | |
if b not in bs: | |
bs.append(b) | |
cs.append(2**8 + n) | |
n += 1 | |
cs = [chr(n) for n in cs] | |
return dict(zip(bs, cs)) | |
ap = argparse.ArgumentParser() | |
ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True) | |
ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16") | |
ap.add_argument("--text-only", action="store_true", required=False, | |
help="Save a text-only model. It can't be used to encode images") | |
ap.add_argument("--vision-only", action="store_true", required=False, | |
help="Save a vision-only model. It can't be used to encode texts") | |
ap.add_argument("--clip-model-is-vision", action="store_true", required=False, | |
help="The clip model is a pure vision model (ShareGPT4V vision extract for example)") | |
ap.add_argument("--clip-model-is-openclip", action="store_true", required=False, | |
help="The clip model is from openclip (for ViT-SO400M type))") | |
ap.add_argument("--minicpmv-projector", help="Path to minicpmv.projector file. If specified, save an image encoder for MiniCPM-V models.") | |
ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2"], default="mlp") | |
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None) | |
# Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711 | |
# Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5 | |
default_image_mean = [0.48145466, 0.4578275, 0.40821073] | |
default_image_std = [0.26862954, 0.26130258, 0.27577711] | |
ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None) | |
ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None) | |
ap.add_argument('--minicpmv_version', type=int, help='minicpmv_version: MiniCPM-V-2 use 1; MiniCPM-V-2.5 use 2; MiniCPM-V-2.6 use 3', default=2) | |
# with proper | |
args = ap.parse_args() | |
if args.text_only and args.vision_only: | |
print("--text-only and --image-only arguments cannot be specified at the same time.") | |
exit(1) | |
if args.use_f32: | |
print("WARNING: Weights for the convolution op is always saved in f16, as the convolution op in GGML does not support 32-bit kernel weights yet.") | |
# output in the same directory as the model if output_dir is None | |
dir_model = args.model_dir | |
if args.clip_model_is_vision or not os.path.exists(dir_model + "/vocab.json") or args.clip_model_is_openclip: | |
vocab = None | |
tokens = None | |
else: | |
with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f: | |
vocab = json.load(f) | |
tokens = [key for key in vocab] | |
# possible data types | |
# ftype == 0 -> float32 | |
# ftype == 1 -> float16 | |
# | |
# map from ftype to string | |
ftype_str = ["f32", "f16"] | |
ftype = 1 | |
if args.use_f32: | |
ftype = 0 | |
# if args.clip_model_is_vision or args.clip_model_is_openclip: | |
# model = CLIPVisionModel.from_pretrained(dir_model) | |
# processor = None | |
# else: | |
# model = CLIPModel.from_pretrained(dir_model) | |
# processor = CLIPProcessor.from_pretrained(dir_model) | |
minicpmv_version = args.minicpmv_version | |
emb_dim = 4096 | |
if minicpmv_version == 1: | |
emb_dim = 2304 | |
elif minicpmv_version == 2: | |
emb_dim = 4096 | |
elif minicpmv_version == 3: | |
emb_dim = 3584 | |
default_vision_config = { | |
"hidden_size": 1152, | |
"image_size": 980, | |
"intermediate_size": 4304, | |
"model_type": "idefics2", | |
"num_attention_heads": 16, | |
"num_hidden_layers": 27, | |
"patch_size": 14, | |
} | |
vision_config = Idefics2VisionConfig(**default_vision_config) | |
model = Idefics2VisionTransformer(vision_config) | |
if minicpmv_version == 3: | |
vision_config = SiglipVisionConfig(**default_vision_config) | |
model = SiglipVisionTransformer(vision_config) | |
processor = None | |
# if model.attn_pool is not None: | |
# model.attn_pool = torch.nn.Identity() | |
# model.blocks = model.blocks[:-1] | |
model.load_state_dict(torch.load(os.path.join(dir_model, "minicpmv.clip"))) | |
fname_middle = None | |
has_text_encoder = True | |
has_vision_encoder = True | |
has_minicpmv_projector = False | |
if args.text_only: | |
fname_middle = "text-" | |
has_vision_encoder = False | |
elif args.minicpmv_projector is not None: | |
fname_middle = "mmproj-" | |
has_text_encoder = False | |
has_minicpmv_projector = True | |
minicpmv_version = 3 | |
elif args.vision_only: | |
fname_middle = "vision-" | |
has_text_encoder = False | |
else: | |
fname_middle = "" | |
output_dir = args.output_dir if args.output_dir is not None else dir_model | |
os.makedirs(output_dir, exist_ok=True) | |
output_prefix = os.path.basename(output_dir).replace("ggml_", "") | |
fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf") | |
fout = GGUFWriter(path=fname_out, arch="clip") | |
fout.add_bool("clip.has_text_encoder", has_text_encoder) | |
fout.add_bool("clip.has_vision_encoder", has_vision_encoder) | |
fout.add_bool("clip.has_minicpmv_projector", has_minicpmv_projector) | |
fout.add_file_type(ftype) | |
if args.text_only: | |
fout.add_description("text-only CLIP model") | |
elif args.vision_only and not has_minicpmv_projector: | |
fout.add_description("vision-only CLIP model") | |
elif has_minicpmv_projector: | |
fout.add_description("image encoder for MiniCPM-V") | |
# add projector type | |
fout.add_string("clip.projector_type", "resampler") | |
fout.add_int32("clip.minicpmv_version", minicpmv_version) | |
else: | |
fout.add_description("two-tower CLIP model") | |
if has_vision_encoder: | |
# vision_model hparams | |
fout.add_uint32("clip.vision.image_size", 448) | |
fout.add_uint32("clip.vision.patch_size", 14) | |
fout.add_uint32(add_key_str(KEY_EMBEDDING_LENGTH, VISION), 1152) | |
fout.add_uint32(add_key_str(KEY_FEED_FORWARD_LENGTH, VISION), 4304) | |
fout.add_uint32("clip.vision.projection_dim", 0) | |
fout.add_uint32(add_key_str(KEY_ATTENTION_HEAD_COUNT, VISION), 16) | |
fout.add_float32(add_key_str(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6) | |
block_count = 26 | |
fout.add_uint32(add_key_str(KEY_BLOCK_COUNT, VISION), block_count) | |
if processor is not None: | |
image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean | |
image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std | |
else: | |
image_mean = args.image_mean if args.image_mean is not None else default_image_mean | |
image_std = args.image_std if args.image_std is not None else default_image_std | |
fout.add_array("clip.vision.image_mean", image_mean) | |
fout.add_array("clip.vision.image_std", image_std) | |
use_gelu = True | |
fout.add_bool("clip.use_gelu", use_gelu) | |
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): | |
""" | |
embed_dim: output dimension for each position | |
pos: a list of positions to be encoded: size (M,) | |
out: (M, D) | |
""" | |
assert embed_dim % 2 == 0 | |
omega = np.arange(embed_dim // 2, dtype=np.float32) | |
omega /= embed_dim / 2. | |
omega = 1. / 10000 ** omega # (D/2,) | |
pos = pos.reshape(-1) # (M,) | |
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product | |
emb_sin = np.sin(out) # (M, D/2) | |
emb_cos = np.cos(out) # (M, D/2) | |
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) | |
return emb | |
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): | |
assert embed_dim % 2 == 0 | |
# use half of dimensions to encode grid_h | |
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) | |
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) | |
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) | |
return emb | |
# https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20 | |
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False): | |
""" | |
grid_size: int of the grid height and width | |
return: | |
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) | |
""" | |
if isinstance(grid_size, int): | |
grid_h_size, grid_w_size = grid_size, grid_size | |
else: | |
grid_h_size, grid_w_size = grid_size[0], grid_size[1] | |
grid_h = np.arange(grid_h_size, dtype=np.float32) | |
grid_w = np.arange(grid_w_size, dtype=np.float32) | |
grid = np.meshgrid(grid_w, grid_h) # here w goes first | |
grid = np.stack(grid, axis=0) | |
grid = grid.reshape([2, 1, grid_h_size, grid_w_size]) | |
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) | |
if cls_token: | |
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0) | |
return pos_embed | |
def _replace_name_resampler(s, v): | |
if re.match("resampler.pos_embed", s): | |
return { | |
s: v, | |
re.sub("pos_embed", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(emb_dim, (70, 70))), | |
} | |
if re.match("resampler.proj", s): | |
return { | |
re.sub("proj", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(emb_dim, (70, 70))), | |
re.sub("proj", "proj.weight", s): v.transpose(-1, -2).contiguous(), | |
} | |
if re.match("resampler.attn.in_proj_.*", s): | |
return { | |
re.sub("attn.in_proj_", "attn.q.", s): v.chunk(3, dim=0)[0], | |
re.sub("attn.in_proj_", "attn.k.", s): v.chunk(3, dim=0)[1], | |
re.sub("attn.in_proj_", "attn.v.", s): v.chunk(3, dim=0)[2], | |
} | |
return {s: v} | |
if has_minicpmv_projector: | |
projector = torch.load(args.minicpmv_projector) | |
new_state_dict = {} | |
for k, v in projector.items(): | |
kvs = _replace_name_resampler(k, v) | |
for nk, nv in kvs.items(): | |
new_state_dict[nk] = nv | |
projector = new_state_dict | |
ftype_cur = 0 | |
for name, data in projector.items(): | |
name = get_tensor_name(name) | |
data = data.squeeze().numpy() | |
n_dims = len(data.shape) | |
if ftype == 1: | |
if name[-7:] == ".weight" and n_dims == 2: | |
print(" Converting to float16") | |
data = data.astype(np.float16) | |
ftype_cur = 1 | |
else: | |
print(" Converting to float32") | |
data = data.astype(np.float32) | |
ftype_cur = 0 | |
else: | |
if data.dtype != np.float32: | |
print(" Converting to float32") | |
data = data.astype(np.float32) | |
ftype_cur = 0 | |
fout.add_tensor(name, data) | |
print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}") | |
print("Projector tensors added\n") | |
def _replace_name(s, v): | |
s = "vision_model." + s | |
if re.match("vision_model.embeddings.position_embedding", s): | |
v = v.unsqueeze(0) | |
return {s: v} | |
return {s: v} | |
state_dict = model.state_dict() | |
new_state_dict = {} | |
for k, v in state_dict.items(): | |
kvs = _replace_name(k, v) | |
for nk, nv in kvs.items(): | |
new_state_dict[nk] = nv | |
state_dict = new_state_dict | |
for name, data in state_dict.items(): | |
if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_minicpmv_projector): | |
# we don't need this | |
print(f"skipping parameter: {name}") | |
continue | |
name = get_tensor_name(name) | |
data = data.squeeze().numpy() | |
n_dims = len(data.shape) | |
# ftype == 0 -> float32, ftype == 1 -> float16 | |
ftype_cur = 0 | |
if n_dims == 4: | |
print(f"tensor {name} is always saved in f16") | |
data = data.astype(np.float16) | |
ftype_cur = 1 | |
elif ftype == 1: | |
if name[-7:] == ".weight" and n_dims == 2: | |
print(" Converting to float16") | |
data = data.astype(np.float16) | |
ftype_cur = 1 | |
else: | |
print(" Converting to float32") | |
data = data.astype(np.float32) | |
ftype_cur = 0 | |
else: | |
if data.dtype != np.float32: | |
print(" Converting to float32") | |
data = data.astype(np.float32) | |
ftype_cur = 0 | |
print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}") | |
fout.add_tensor(name, data) | |
fout.write_header_to_file() | |
fout.write_kv_data_to_file() | |
fout.write_tensors_to_file() | |
fout.close() | |
print("Done. Output file: " + fname_out) | |