Spaces:
Runtime error
Runtime error
static std::vector<std::string> split_lines(const std::string & s, const std::string & separator = "\n") { | |
std::vector<std::string> lines; | |
size_t start = 0; | |
size_t end = s.find(separator); | |
while (end != std::string::npos) { | |
lines.push_back(s.substr(start, end - start)); | |
start = end + separator.length(); | |
end = s.find(separator, start); | |
} | |
lines.push_back(s.substr(start)); // Add the last part | |
return lines; | |
} | |
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, llama_seq_id seq_id) { | |
size_t n_tokens = tokens.size(); | |
for (size_t i = 0; i < n_tokens; i++) { | |
common_batch_add(batch, tokens[i], i, { seq_id }, true); | |
} | |
} | |
static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd, int embd_norm) { | |
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx); | |
const struct llama_model * model = llama_get_model(ctx); | |
// clear previous kv_cache values (irrelevant for embeddings) | |
llama_kv_cache_clear(ctx); | |
// run model | |
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq); | |
if (llama_model_has_encoder(model) && !llama_model_has_decoder(model)) { | |
// encoder-only model | |
if (llama_encode(ctx, batch) < 0) { | |
LOG_ERR("%s : failed to encode\n", __func__); | |
} | |
} else if (!llama_model_has_encoder(model) && llama_model_has_decoder(model)) { | |
// decoder-only model | |
if (llama_decode(ctx, batch) < 0) { | |
LOG_ERR("%s : failed to decode\n", __func__); | |
} | |
} | |
for (int i = 0; i < batch.n_tokens; i++) { | |
if (!batch.logits[i]) { | |
continue; | |
} | |
const float * embd = nullptr; | |
int embd_pos = 0; | |
if (pooling_type == LLAMA_POOLING_TYPE_NONE) { | |
// try to get token embeddings | |
embd = llama_get_embeddings_ith(ctx, i); | |
embd_pos = i; | |
GGML_ASSERT(embd != NULL && "failed to get token embeddings"); | |
} else { | |
// try to get sequence embeddings - supported only when pooling_type is not NONE | |
embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]); | |
embd_pos = batch.seq_id[i][0]; | |
GGML_ASSERT(embd != NULL && "failed to get sequence embeddings"); | |
} | |
float * out = output + embd_pos * n_embd; | |
common_embd_normalize(embd, out, n_embd, embd_norm); | |
} | |
} | |
int main(int argc, char ** argv) { | |
common_params params; | |
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_EMBEDDING)) { | |
return 1; | |
} | |
common_init(); | |
params.embedding = true; | |
// For non-causal models, batch size must be equal to ubatch size | |
params.n_ubatch = params.n_batch; | |
llama_backend_init(); | |
llama_numa_init(params.numa); | |
// load the model | |
common_init_result llama_init = common_init_from_params(params); | |
llama_model * model = llama_init.model; | |
llama_context * ctx = llama_init.context; | |
if (model == NULL) { | |
LOG_ERR("%s: unable to load model\n", __func__); | |
return 1; | |
} | |
const int n_ctx_train = llama_n_ctx_train(model); | |
const int n_ctx = llama_n_ctx(ctx); | |
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx); | |
if (llama_model_has_encoder(model) && llama_model_has_decoder(model)) { | |
LOG_ERR("%s: computing embeddings in encoder-decoder models is not supported\n", __func__); | |
return 1; | |
} | |
if (n_ctx > n_ctx_train) { | |
LOG_WRN("%s: warning: model was trained on only %d context tokens (%d specified)\n", | |
__func__, n_ctx_train, n_ctx); | |
} | |
// print system information | |
{ | |
LOG_INF("\n"); | |
LOG_INF("%s\n", common_params_get_system_info(params).c_str()); | |
} | |
// split the prompt into lines | |
std::vector<std::string> prompts = split_lines(params.prompt, params.embd_sep); | |
// max batch size | |
const uint64_t n_batch = params.n_batch; | |
GGML_ASSERT(params.n_batch >= params.n_ctx); | |
// tokenize the prompts and trim | |
std::vector<std::vector<int32_t>> inputs; | |
for (const auto & prompt : prompts) { | |
auto inp = common_tokenize(ctx, prompt, true, true); | |
if (inp.size() > n_batch) { | |
LOG_ERR("%s: number of tokens in input line (%lld) exceeds batch size (%lld), increase batch size and re-run\n", | |
__func__, (long long int) inp.size(), (long long int) n_batch); | |
return 1; | |
} | |
inputs.push_back(inp); | |
} | |
// check if the last token is SEP | |
// it should be automatically added by the tokenizer when 'tokenizer.ggml.add_eos_token' is set to 'true' | |
for (auto & inp : inputs) { | |
if (inp.empty() || inp.back() != llama_token_sep(model)) { | |
LOG_WRN("%s: last token in the prompt is not SEP\n", __func__); | |
LOG_WRN("%s: 'tokenizer.ggml.add_eos_token' should be set to 'true' in the GGUF header\n", __func__); | |
} | |
} | |
// tokenization stats | |
if (params.verbose_prompt) { | |
for (int i = 0; i < (int) inputs.size(); i++) { | |
LOG_INF("%s: prompt %d: '%s'\n", __func__, i, prompts[i].c_str()); | |
LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, inputs[i].size()); | |
for (int j = 0; j < (int) inputs[i].size(); j++) { | |
LOG("%6d -> '%s'\n", inputs[i][j], common_token_to_piece(ctx, inputs[i][j]).c_str()); | |
} | |
LOG("\n\n"); | |
} | |
} | |
// initialize batch | |
const int n_prompts = prompts.size(); | |
struct llama_batch batch = llama_batch_init(n_batch, 0, 1); | |
// count number of embeddings | |
int n_embd_count = 0; | |
if (pooling_type == LLAMA_POOLING_TYPE_NONE) { | |
for (int k = 0; k < n_prompts; k++) { | |
n_embd_count += inputs[k].size(); | |
} | |
} else { | |
n_embd_count = n_prompts; | |
} | |
// allocate output | |
const int n_embd = llama_n_embd(model); | |
std::vector<float> embeddings(n_embd_count * n_embd, 0); | |
float * emb = embeddings.data(); | |
// break into batches | |
int e = 0; // number of embeddings already stored | |
int s = 0; // number of prompts in current batch | |
for (int k = 0; k < n_prompts; k++) { | |
// clamp to n_batch tokens | |
auto & inp = inputs[k]; | |
const uint64_t n_toks = inp.size(); | |
// encode if at capacity | |
if (batch.n_tokens + n_toks > n_batch) { | |
float * out = emb + e * n_embd; | |
batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize); | |
e += pooling_type == LLAMA_POOLING_TYPE_NONE ? batch.n_tokens : s; | |
s = 0; | |
common_batch_clear(batch); | |
} | |
// add to batch | |
batch_add_seq(batch, inp, s); | |
s += 1; | |
} | |
// final batch | |
float * out = emb + e * n_embd; | |
batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize); | |
if (params.embd_out.empty()) { | |
LOG("\n"); | |
if (pooling_type == LLAMA_POOLING_TYPE_NONE) { | |
for (int j = 0; j < n_embd_count; j++) { | |
LOG("embedding %d: ", j); | |
for (int i = 0; i < std::min(3, n_embd); i++) { | |
if (params.embd_normalize == 0) { | |
LOG("%6.0f ", emb[j * n_embd + i]); | |
} else { | |
LOG("%9.6f ", emb[j * n_embd + i]); | |
} | |
} | |
LOG(" ... "); | |
for (int i = n_embd - 3; i < n_embd; i++) { | |
if (params.embd_normalize == 0) { | |
LOG("%6.0f ", emb[j * n_embd + i]); | |
} else { | |
LOG("%9.6f ", emb[j * n_embd + i]); | |
} | |
} | |
LOG("\n"); | |
} | |
} else if (pooling_type == LLAMA_POOLING_TYPE_RANK) { | |
for (int j = 0; j < n_embd_count; j++) { | |
// NOTE: if you change this log - update the tests in ci/run.sh | |
LOG("rerank score %d: %8.3f\n", j, emb[j * n_embd]); | |
} | |
} else { | |
// print the first part of the embeddings or for a single prompt, the full embedding | |
for (int j = 0; j < n_prompts; j++) { | |
LOG("embedding %d: ", j); | |
for (int i = 0; i < (n_prompts > 1 ? std::min(16, n_embd) : n_embd); i++) { | |
if (params.embd_normalize == 0) { | |
LOG("%6.0f ", emb[j * n_embd + i]); | |
} else { | |
LOG("%9.6f ", emb[j * n_embd + i]); | |
} | |
} | |
LOG("\n"); | |
} | |
// print cosine similarity matrix | |
if (n_prompts > 1) { | |
LOG("\n"); | |
LOG("cosine similarity matrix:\n\n"); | |
for (int i = 0; i < n_prompts; i++) { | |
LOG("%6.6s ", prompts[i].c_str()); | |
} | |
LOG("\n"); | |
for (int i = 0; i < n_prompts; i++) { | |
for (int j = 0; j < n_prompts; j++) { | |
float sim = common_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd); | |
LOG("%6.2f ", sim); | |
} | |
LOG("%1.10s", prompts[i].c_str()); | |
LOG("\n"); | |
} | |
} | |
} | |
} | |
if (params.embd_out == "json" || params.embd_out == "json+" || params.embd_out == "array") { | |
const bool notArray = params.embd_out != "array"; | |
LOG(notArray ? "{\n \"object\": \"list\",\n \"data\": [\n" : "["); | |
for (int j = 0;;) { // at least one iteration (one prompt) | |
if (notArray) LOG(" {\n \"object\": \"embedding\",\n \"index\": %d,\n \"embedding\": ",j); | |
LOG("["); | |
for (int i = 0;;) { // at least one iteration (n_embd > 0) | |
LOG(params.embd_normalize == 0 ? "%1.0f" : "%1.7f", emb[j * n_embd + i]); | |
i++; | |
if (i < n_embd) LOG(","); else break; | |
} | |
LOG(notArray ? "]\n }" : "]"); | |
j++; | |
if (j < n_embd_count) LOG(notArray ? ",\n" : ","); else break; | |
} | |
LOG(notArray ? "\n ]" : "]\n"); | |
if (params.embd_out == "json+" && n_prompts > 1) { | |
LOG(",\n \"cosineSimilarity\": [\n"); | |
for (int i = 0;;) { // at least two iteration (n_embd_count > 1) | |
LOG(" ["); | |
for (int j = 0;;) { // at least two iteration (n_embd_count > 1) | |
float sim = common_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd); | |
LOG("%6.2f", sim); | |
j++; | |
if (j < n_embd_count) LOG(", "); else break; | |
} | |
LOG(" ]"); | |
i++; | |
if (i < n_embd_count) LOG(",\n"); else break; | |
} | |
LOG("\n ]"); | |
} | |
if (notArray) LOG("\n}\n"); | |
} | |
LOG("\n"); | |
llama_perf_context_print(ctx); | |
// clean up | |
llama_batch_free(batch); | |
llama_free(ctx); | |
llama_free_model(model); | |
llama_backend_free(); | |
return 0; | |
} | |