Spaces:
Runtime error
Runtime error
// GGUF keys & tensor names. | |
//////////////////////////////////////// llama2.c model structs and functions to load models, alloc memory etc. | |
typedef struct { | |
int dim; // transformer dimension | |
int hidden_dim; // for ffn layers | |
int n_layers; // number of layers | |
int n_heads; // number of query heads | |
int n_kv_heads; // number of key/value heads (can be < query heads because of multiquery) | |
int vocab_size; // vocabulary size, usually 256 (byte-level) | |
int seq_len; // max sequence length | |
} Config; | |
struct TransformerWeights { | |
// token embedding table | |
std::vector<float> token_embedding_table; // (vocab_size, dim) | |
// weights for rmsnorms | |
std::vector<float> rms_att_weight; // (layer, dim) rmsnorm weights | |
std::vector<float> rms_ffn_weight; // (layer, dim) | |
// weights for matmuls | |
std::vector<float> wq; // (layer, dim, dim) | |
std::vector<float> wk; // (layer, dim, dim) | |
std::vector<float> wv; // (layer, dim, dim) | |
std::vector<float> wo; // (layer, dim, dim) | |
// weights for ffn | |
std::vector<float> w1; // (layer, hidden_dim, dim) | |
std::vector<float> w2; // (layer, dim, hidden_dim) | |
std::vector<float> w3; // (layer, hidden_dim, dim) | |
// final rmsnorm | |
std::vector<float> rms_final_weight; // (dim,) | |
// freq_cis for RoPE relatively positional embeddings | |
// std::vector<float> freq_cis_real; // (seq_len, dim/2) | |
// std::vector<float> freq_cis_imag; // (seq_len, dim/2) | |
// (optional) classifier weights for the logits, on the last layer | |
std::vector<float> wcls; | |
}; | |
static void alloc_weights(TransformerWeights * w, const Config * p, bool shared_weights) { | |
const int n_multiqueries = p->n_kv_heads <= 0 || p->n_kv_heads >= p->n_heads ? 1 : p->n_heads / p->n_kv_heads; | |
try { | |
w->token_embedding_table.resize(p->vocab_size * p->dim); | |
LOG_INF("%s: Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim); | |
w->rms_att_weight.resize(p->n_layers * p->dim); | |
LOG_INF("%s: Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim); | |
w->rms_ffn_weight.resize(p->n_layers * p->dim); | |
LOG_INF("%s: Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim); | |
w->wq.resize(p->n_layers * p->dim * p->dim); | |
LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim); | |
w->wk.resize(p->n_layers * p->dim * p->dim / n_multiqueries); | |
LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim / n_multiqueries, p->n_layers * p->dim * p->dim / n_multiqueries); | |
w->wv.resize(p->n_layers * p->dim * p->dim / n_multiqueries); | |
LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim / n_multiqueries, p->n_layers * p->dim * p->dim / n_multiqueries); | |
w->wo.resize(p->n_layers * p->dim * p->dim); | |
LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim); | |
w->w1.resize(p->n_layers * p->hidden_dim * p->dim); | |
LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim); | |
w->w2.resize(p->n_layers * p->hidden_dim * p->dim); | |
LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim); | |
w->w3.resize(p->n_layers * p->hidden_dim * p->dim); | |
LOG_INF("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim); | |
w->rms_final_weight.resize(p->dim); | |
LOG_INF("%s: Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim); | |
if (shared_weights) { | |
w->wcls = {}; | |
} else { | |
w->wcls.resize(p->vocab_size * p->dim); | |
LOG_INF("%s: Allocating [%d] x [%d] = [%d] float space for w->wcls\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim); | |
} | |
} | |
catch (std::length_error &) { | |
die("Invalid configuration. Failed to allocate memory for weights"); | |
} | |
} | |
static int checkpoint_init_weights(TransformerWeights * w, const Config * p, FILE * f, bool shared_weights) { | |
if (fread(w->token_embedding_table.data(), sizeof(float), w->token_embedding_table.size(), f) != w->token_embedding_table.size()) return 1; | |
if (fread(w->rms_att_weight.data(), sizeof(float), w->rms_att_weight.size(), f) != w->rms_att_weight.size()) return 1; | |
if (fread(w->wq.data(), sizeof(float), w->wq.size(), f) != w->wq.size()) return 1; | |
if (fread(w->wk.data(), sizeof(float), w->wk.size(), f) != w->wk.size()) return 1; | |
if (fread(w->wv.data(), sizeof(float), w->wv.size(), f) != w->wv.size()) return 1; | |
if (fread(w->wo.data(), sizeof(float), w->wo.size(), f) != w->wo.size()) return 1; | |
if (fread(w->rms_ffn_weight.data(), sizeof(float), w->rms_ffn_weight.size(), f) != w->rms_ffn_weight.size()) return 1; | |
if (fread(w->w1.data(), sizeof(float), w->w1.size(), f) != w->w1.size()) return 1; | |
if (fread(w->w2.data(), sizeof(float), w->w2.size(), f) != w->w2.size()) return 1; | |
if (fread(w->w3.data(), sizeof(float), w->w3.size(), f) != w->w3.size()) return 1; | |
if (fread(w->rms_final_weight.data(), sizeof(float), w->rms_final_weight.size(), f) != w->rms_final_weight.size()) return 1; | |
// Skip freq_cis_real & freq_cis_imag | |
int head_size = p->dim / p->n_heads; | |
fseek(f, p->seq_len * head_size * sizeof(float), SEEK_CUR); | |
if (!shared_weights && fread(w->wcls.data(), sizeof(float), w->wcls.size(), f) != w->wcls.size()) return 1; | |
// Check we didn't forget to read anything | |
auto curr = ftell(f); | |
fseek(f, 0, SEEK_END); | |
auto end = ftell(f); | |
if (curr != end) { | |
LOG_ERR("%s: Error: failed to read the checkpoint file to the end (curr = %ld, end = %ld)\n", __func__, curr, end); | |
return 1; | |
} | |
return 0; | |
} | |
static void print_sample_weights(TransformerWeights *w){ | |
LOG_INF("----- Quick print of first of the weight vales of all the variables\n"); | |
LOG_INF("%f\n", w->token_embedding_table[0]); | |
LOG_INF("%f\n", w->rms_att_weight[0]); | |
LOG_INF("%f\n", w->rms_ffn_weight[0]); | |
LOG_INF("%f\n", w->wq[0]); | |
LOG_INF("%f\n", w->wk[0]); | |
LOG_INF("%f\n", w->wv[0]); | |
LOG_INF("%f\n", w->wo[0]); | |
LOG_INF("%f\n", w->w1[0]); | |
LOG_INF("%f\n", w->w2[0]); | |
LOG_INF("%f\n", w->w3[0]); | |
LOG_INF("%f\n", w->rms_att_weight[0]); | |
if (!w->wcls.empty()) LOG_INF("%f\n", w->wcls[0]); | |
} | |
//////////////////////////////////////////////////////////////////////////////////////////////////////////// | |
//////////////////////////////////////// ggml structs and functions required to load models, configs and save the model. | |
struct my_llama_vocab { | |
using id = int32_t; | |
using token = std::string; | |
using ttype = llama_token_type; | |
struct token_data { | |
token text; | |
float score; | |
ttype type; | |
}; | |
std::unordered_map<token, id> token_to_id; | |
std::vector<token_data> id_to_token; | |
}; | |
struct my_llama_hparams { | |
uint32_t n_vocab = 32000; | |
uint32_t n_ctx = 512; // this is provided as user input? | |
uint32_t n_embd = 4096; | |
uint32_t n_ff = 11008; | |
uint32_t n_mult = 4; | |
uint32_t n_head = 32; | |
uint32_t n_head_kv = 32; | |
uint32_t n_layer = 32; | |
uint32_t n_rot = 64; | |
bool operator!=(const my_llama_hparams& other) const { | |
return memcmp(this, &other, sizeof(my_llama_hparams)); | |
} | |
}; | |
struct my_llama_layer { | |
// normalization | |
struct ggml_tensor * attention_norm; | |
// attention | |
struct ggml_tensor * wq; | |
struct ggml_tensor * wk; | |
struct ggml_tensor * wv; | |
struct ggml_tensor * wo; | |
// normalization | |
struct ggml_tensor * ffn_norm; | |
// ff | |
struct ggml_tensor * w1; | |
struct ggml_tensor * w2; | |
struct ggml_tensor * w3; | |
}; | |
struct my_llama_model { | |
struct ggml_context * ctx = NULL; | |
std::string name; | |
my_llama_hparams hparams; | |
struct ggml_tensor * tok_embeddings; | |
struct ggml_tensor * norm; | |
struct ggml_tensor * output; | |
std::vector<my_llama_layer> layers; | |
uint32_t train_its = 0; | |
uint32_t train_samples = 0; | |
uint32_t train_tokens = 0; | |
}; | |
struct train_params { | |
const char * fn_vocab_model; | |
const char * fn_llama2c_model; | |
const char * fn_llama2c_output_model; | |
const char * fn_train_data; | |
const char * fn_checkpoint_in; | |
const char * fn_checkpoint_out; | |
const char * fn_model_out; | |
uint32_t seed; | |
int n_ctx; | |
int n_embd; | |
int n_mult; | |
int n_head; | |
int n_layer; | |
int n_rotmax; | |
int n_threads; | |
int n_batch; | |
int n_examples; | |
int n_predict; | |
int print_info_interval; | |
int print_details_interval; | |
bool samples_start_after_nl; | |
bool use_adam; | |
bool use_flash; | |
bool use_scratch; | |
// only adam | |
int warmup; | |
int cos_decay_steps; | |
float cos_decay_restart; | |
float cos_decay_alpha; | |
int lbfgs_n_iter; | |
int adam_n_iter; | |
float adam_alpha; | |
float adam_decay; | |
int mem_model_gb; | |
int mem_compute_gb; | |
int mem_compute0_gb; | |
int mem_compute1_gb; | |
}; | |
static void print_params(struct my_llama_hparams * params) { | |
LOG_INF("%s: n_vocab: %u\n", __func__, params->n_vocab); | |
LOG_INF("%s: n_ctx: %u\n", __func__, params->n_ctx); | |
LOG_INF("%s: n_embd: %u\n", __func__, params->n_embd); | |
LOG_INF("%s: n_mult: %u\n", __func__, params->n_mult); | |
LOG_INF("%s: n_head: %u\n", __func__, params->n_head); | |
LOG_INF("%s: n_head_kv: %u\n", __func__, params->n_head_kv); | |
LOG_INF("%s: n_ff: %u\n", __func__, params->n_ff); | |
LOG_INF("%s: n_layer: %u\n", __func__, params->n_layer); | |
LOG_INF("%s: n_rot: %u\n", __func__, params->n_rot); | |
} | |
static void print_tensor_info(const struct ggml_context * ctx) { | |
for (auto t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { | |
LOG_INF("%s: Allocating ", __func__); | |
int64_t total = 1; | |
int i = 0; | |
for (; i < ggml_n_dims(t); ++i) { | |
if (i > 0) LOG("x "); | |
LOG("[%" PRId64 "] ", t->ne[i]); | |
total *= t->ne[i]; | |
} | |
if (i > 1) LOG("= [%" PRId64 "] ", total); | |
LOG("float space for %s\n", ggml_get_name(t)); | |
} | |
} | |
static void init_model(struct my_llama_model * model) { | |
const auto & hparams = model->hparams; | |
const uint32_t n_embd = hparams.n_embd; | |
const uint32_t n_layer = hparams.n_layer; | |
const uint32_t n_vocab = hparams.n_vocab; | |
const uint32_t n_multiqueries = hparams.n_head_kv <= 0 || hparams.n_head_kv >= hparams.n_head ? 1 : hparams.n_head / hparams.n_head_kv; | |
const uint32_t n_ff = hparams.n_ff; | |
struct ggml_context * ctx = model->ctx; | |
model->train_its = 0; | |
model->train_samples = 0; | |
model->train_tokens = 0; | |
model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); | |
model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); | |
model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); | |
ggml_set_name(model->tok_embeddings, "tok_embeddings.weight"); | |
ggml_set_name(model->norm, "norm.weight"); | |
ggml_set_name(model->output, "output.weight"); | |
model->layers.resize(n_layer); | |
for (uint32_t i = 0; i < n_layer; ++i) { | |
auto & layer = model->layers[i]; | |
std::string layers_i = "layers." + std::to_string(i); | |
layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); | |
layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); | |
layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd / n_multiqueries); | |
layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd / n_multiqueries); | |
layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); | |
layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); | |
layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); | |
layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd); | |
layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); | |
ggml_set_name(layer.attention_norm, (layers_i + ".attention_norm.weight").c_str()); | |
ggml_set_name(layer.wq, (layers_i + ".attention.wq.weight").c_str()); | |
ggml_set_name(layer.wk, (layers_i + ".attention.wk.weight").c_str()); | |
ggml_set_name(layer.wv, (layers_i + ".attention.wv.weight").c_str()); | |
ggml_set_name(layer.wo, (layers_i + ".attention.wo.weight").c_str()); | |
ggml_set_name(layer.ffn_norm, (layers_i + ".ffn_norm.weight").c_str()); | |
ggml_format_name(layer.w1, "%s.feed_forward.w1.weight", layers_i.c_str()); | |
ggml_format_name(layer.w2, "%s.feed_forward.w2.weight", layers_i.c_str()); | |
ggml_format_name(layer.w3, "%s.feed_forward.w3.weight", layers_i.c_str()); | |
} | |
print_tensor_info(ctx); | |
} | |
static float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) { | |
float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); | |
return *ptr; | |
} | |
static int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) { | |
int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); | |
return *ptr; | |
} | |
static void print_row(struct ggml_tensor * probs, int i) { | |
for (int k = 0; k < probs->ne[0]; ++k) { | |
float p = get_f32_2d(probs, k, i); | |
LOG(" %f", p); | |
} | |
LOG("\n"); | |
} | |
static void print_matrix(struct ggml_tensor * probs) { | |
assert(ggml_is_matrix(probs)); | |
for (int i = 0; i < probs->ne[1]; ++i) { | |
for (int k = 0; k < probs->ne[0]; ++k) { | |
float p = get_f32_2d(probs, k, i); | |
LOG(" %.2f", p); | |
} | |
LOG("\n"); | |
} | |
} | |
struct llama_file { | |
// use FILE * so we don't have to re-open the file to mmap | |
FILE * fp; | |
size_t size; | |
llama_file(const char * fname, const char * mode) { | |
fp = std::fopen(fname, mode); | |
if (fp == NULL) { | |
size = 0; | |
} else { | |
seek(0, SEEK_END); | |
size = tell(); | |
seek(0, SEEK_SET); | |
} | |
} | |
size_t tell() const { | |
__int64 ret = _ftelli64(fp); | |
long ret = std::ftell(fp); | |
GGML_ASSERT(ret != -1); // this really shouldn't fail | |
return (size_t) ret; | |
} | |
void seek(size_t offset, int whence) { | |
int ret = _fseeki64(fp, (__int64) offset, whence); | |
int ret = std::fseek(fp, (long) offset, whence); | |
GGML_ASSERT(ret == 0); // same | |
} | |
void read_raw(void * ptr, size_t size) { | |
if (size == 0) { | |
return; | |
} | |
errno = 0; | |
std::size_t ret = std::fread(ptr, size, 1, fp); | |
if (ferror(fp)) { | |
die_fmt("fread failed: %s", strerror(errno)); | |
} | |
if (ret != 1) { | |
die("unexpectedly reached end of file"); | |
} | |
} | |
std::uint32_t read_u32() { | |
std::uint32_t ret; | |
read_raw(&ret, sizeof(ret)); | |
return ret; | |
} | |
std::float_t read_f32() { | |
std::float_t ret; | |
read_raw(&ret, sizeof(ret)); | |
return ret; | |
} | |
std::string read_string(std::uint32_t len) { | |
std::vector<char> chars(len); | |
read_raw(chars.data(), len); | |
return std::string(chars.data(), len); | |
} | |
~llama_file() { | |
if (fp) { | |
std::fclose(fp); | |
} | |
} | |
}; | |
static bool is_ggml_file(const char * filename) { | |
llama_file file(filename, "rb"); | |
if (file.size < 4) { | |
return false; | |
} | |
std::string magic = file.read_string(4); | |
return magic == GGUF_MAGIC; | |
} | |
static std::string llama_escape_whitespaces(const std::string & text) { | |
std::ostringstream out; | |
for (char c : text) { | |
if (c == ' ') out << "\xe2\x96\x81"; | |
else out << c; | |
} | |
return out.str(); | |
} | |
static void load_vocab(const char * filename, const Config * config, struct my_llama_vocab * vocab) { | |
if (is_ggml_file(filename)) { | |
LOG_INF("%s: Loading vocabulary from gguf file %s\n", __func__, filename); | |
struct ggml_context * ctx_data = NULL; | |
struct gguf_init_params params = { | |
/*.no_alloc = */ false, | |
/*.ctx = */ &ctx_data, | |
}; | |
struct gguf_context * ctx = gguf_init_from_file(filename, params); | |
GGML_ASSERT(ctx != NULL); | |
const int model_idx = gguf_find_key(ctx, KV_TOKENIZER_MODEL); | |
GGML_ASSERT(model_idx >= 0); | |
std::string tokenizer_name = gguf_get_val_str(ctx, model_idx); | |
GGML_ASSERT(tokenizer_name == TOKENIZER_NAME); | |
const int token_idx = gguf_find_key(ctx, KV_TOKENIZER_LIST); | |
GGML_ASSERT(token_idx >= 0); | |
const int score_idx = gguf_find_key(ctx, KV_TOKENIZER_SCORES); | |
GGML_ASSERT(score_idx >= 0); | |
const float * scores = (const float * ) gguf_get_arr_data(ctx, score_idx); | |
const int toktype_idx = gguf_find_key(ctx, KV_TOKENIZER_TOKEN_TYPE); | |
GGML_ASSERT(toktype_idx >= 0); | |
const int * toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx); | |
const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx); | |
if (n_vocab != static_cast<uint32_t>(config->vocab_size)) { | |
die_fmt("vocab size mismatch: (gguf) %u != (llama2c) %d", n_vocab, config->vocab_size); | |
} | |
vocab->id_to_token.resize(n_vocab); | |
for (uint32_t i = 0; i < n_vocab; i++) { | |
std::string word = gguf_get_arr_str(ctx, token_idx, i); | |
vocab->token_to_id[word] = i; | |
auto & token_data = vocab->id_to_token[i]; | |
token_data.text = std::move(word); | |
token_data.score = scores[i]; | |
token_data.type = (llama_token_type) toktypes[i]; | |
} | |
ggml_free(ctx_data); | |
gguf_free(ctx); | |
} else { | |
// assume llama2.c vocabulary | |
LOG_INF("%s: Assuming llama2.c vocabulary since %s is not a gguf file\n", __func__, filename); | |
llama_file file(filename, "rb"); | |
if (!file.fp) { | |
die_fmt("%s: %s", strerror(errno), filename); | |
} | |
const int n_vocab = config->vocab_size; | |
/* uint32_t max_token_length = */ file.read_u32(); // unused | |
vocab->id_to_token.resize(n_vocab); | |
for (my_llama_vocab::id id=0; id<n_vocab; ++id) { | |
float_t score = file.read_f32(); | |
uint32_t len = file.read_u32(); | |
std::string text = file.read_string(len); | |
unsigned char byte_val; | |
my_llama_vocab::ttype type = LLAMA_TOKEN_TYPE_NORMAL; | |
if (id == UNKNOWN_TOKEN_ID) { | |
text = "<unk>"; | |
type = LLAMA_TOKEN_TYPE_UNKNOWN; | |
} else if (id == BOS_TOKEN_ID) { | |
text = "<s>"; | |
type = LLAMA_TOKEN_TYPE_CONTROL; | |
} else if (id == EOS_TOKEN_ID) { | |
text = "</s>"; | |
type = LLAMA_TOKEN_TYPE_CONTROL; | |
} else if (text.empty()) { | |
type = LLAMA_TOKEN_TYPE_CONTROL; | |
} else if (sscanf(text.c_str(), "<0x%02hhX>", &byte_val) == 1) { | |
// Text of byte tokens is already in the expected format. | |
type = LLAMA_TOKEN_TYPE_BYTE; | |
} else { | |
type = LLAMA_TOKEN_TYPE_NORMAL; | |
} | |
text = llama_escape_whitespaces(text); | |
vocab->id_to_token[id].text = text; | |
vocab->id_to_token[id].score = score; | |
vocab->id_to_token[id].type = type; | |
vocab->token_to_id.emplace(text, id); | |
} | |
} | |
} | |
static void convert_weights_ak_to_gg(struct ggml_tensor * gg_weights, const float * karpathy_weights) { | |
int size = 1; | |
for (int dim = 0; dim < ggml_n_dims(gg_weights); ++dim) { | |
size *= gg_weights->ne[dim]; | |
} | |
for (int ct = 0; ct < size; ++ct) { | |
int64_t i0 = 0; int64_t i1 = 0; | |
int64_t i2 = 0; int64_t i3 = 0; | |
ggml_unravel_index(gg_weights, ct, &i0, &i1, &i2, &i3); | |
ggml_set_f32_nd(gg_weights, i0, i1, i2, i3, karpathy_weights[ct]); | |
} | |
} | |
static void save_as_llama_model( | |
struct my_llama_vocab * vocab, struct my_llama_model * model, TransformerWeights* w, const char * filename | |
) { | |
// convert AK weights into GG weights one by one. | |
// w->token_embedding_table -> model->tok_embeddings | |
// float* -> struct ggml_tensor | |
convert_weights_ak_to_gg(model->tok_embeddings, w->token_embedding_table.data()); | |
convert_weights_ak_to_gg(model->output, !w->wcls.empty() ? w->wcls.data() : w->token_embedding_table.data()); | |
convert_weights_ak_to_gg(model->norm, w->rms_final_weight.data()); | |
//print_row(model->norm, 0); | |
// for rms-att-weight | |
int row_length = model->hparams.n_embd; | |
int n_ff = model->hparams.n_ff; | |
const uint32_t n_multiqueries = model->hparams.n_head_kv <= 0 || model->hparams.n_head_kv >= model->hparams.n_head ? 1 : model->hparams.n_head / model->hparams.n_head_kv; | |
for (uint32_t i = 0; i < model->hparams.n_layer; ++i){ | |
auto & layer = model->layers[i]; | |
// 1d | |
convert_weights_ak_to_gg(layer.attention_norm, &w->rms_att_weight[i*row_length]); | |
convert_weights_ak_to_gg(layer.ffn_norm , &w->rms_ffn_weight[i*row_length]); | |
// from 3d matrix layer x dim x dim to 2d matrix dim x dim | |
convert_weights_ak_to_gg(layer.wq , &w->wq[i*row_length*row_length]); | |
convert_weights_ak_to_gg(layer.wo , &w->wo[i*row_length*row_length]); | |
// from 3d matrix layer x dim x dim to 2d matrix dim x dim / n_multiqueries | |
convert_weights_ak_to_gg(layer.wk , &w->wk[i*row_length*row_length/n_multiqueries]); | |
convert_weights_ak_to_gg(layer.wv , &w->wv[i*row_length*row_length/n_multiqueries]); | |
convert_weights_ak_to_gg(layer.w1 , &w->w1[i*row_length*n_ff]); | |
convert_weights_ak_to_gg(layer.w2 , &w->w2[i*n_ff*row_length]); | |
convert_weights_ak_to_gg(layer.w3 , &w->w3[i*row_length*n_ff]); | |
} | |
struct gguf_context * ctx = gguf_init_empty(); | |
std::vector<const char*> tokens; | |
std::vector<float> scores; | |
std::vector<llama_token_type> token_types; | |
for (const my_llama_vocab::token_data & token_data : vocab->id_to_token) { | |
tokens.push_back(token_data.text.c_str()); | |
scores.push_back(token_data.score); | |
token_types.push_back(token_data.type); | |
} | |
gguf_set_arr_str(ctx, KV_TOKENIZER_LIST, tokens.data(), tokens.size()); | |
gguf_set_arr_data(ctx, KV_TOKENIZER_SCORES, GGUF_TYPE_FLOAT32, scores.data(), scores.size()); | |
gguf_set_arr_data(ctx, KV_TOKENIZER_TOKEN_TYPE, GGUF_TYPE_INT32, token_types.data(), token_types.size()); | |
gguf_set_val_str(ctx, KV_TOKENIZER_MODEL, TOKENIZER_NAME); | |
gguf_set_val_str(ctx, KV_GENERAL_ARCHITECTURE, "llama"); | |
gguf_set_val_str(ctx, KV_GENERAL_NAME, "llama"); | |
// special tokens | |
gguf_set_val_u32(ctx, KV_TOKENIZER_UNK_ID, UNKNOWN_TOKEN_ID); | |
gguf_set_val_u32(ctx, KV_TOKENIZER_BOS_ID, BOS_TOKEN_ID); | |
gguf_set_val_u32(ctx, KV_TOKENIZER_EOS_ID, EOS_TOKEN_ID); | |
gguf_set_val_u32(ctx, KV_TOKENIZER_SEP_ID, -1); | |
gguf_set_val_u32(ctx, KV_TOKENIZER_PAD_ID, -1); | |
gguf_set_val_u32(ctx, KV_CONTEXT_LENGTH, model->hparams.n_ctx); | |
gguf_set_val_u32(ctx, KV_EMBEDDING_LENGTH, model->hparams.n_embd); | |
gguf_set_val_u32(ctx, KV_FEED_FORWARD_LENGTH, model->hparams.n_ff); | |
gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head); | |
gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head); | |
gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT_KV, model->hparams.n_head_kv); | |
gguf_set_val_u32(ctx, KV_BLOCK_COUNT, model->hparams.n_layer); | |
gguf_set_val_u32(ctx, KV_ROPE_DIMENSION_COUNT, model->hparams.n_rot); | |
gguf_set_val_f32(ctx, KV_ATTENTION_LAYERNORM_RMS_EPS, 1e-5f); | |
// write tensors | |
ggml_set_name(model->tok_embeddings, TN_TOKEN_EMBD); | |
gguf_add_tensor(ctx, model->tok_embeddings); | |
ggml_set_name(model->norm, TN_OUTPUT_NORM); | |
gguf_add_tensor(ctx, model->norm); | |
ggml_set_name(model->output, TN_OUTPUT); | |
gguf_add_tensor(ctx, model->output); | |
for (uint32_t i = 0; i < model->hparams.n_layer; ++i) { | |
auto & layer = model->layers[i]; | |
ggml_format_name(layer.wq, TN_ATTN_Q, i); | |
gguf_add_tensor(ctx, layer.wq); | |
ggml_format_name(layer.wk, TN_ATTN_K, i); | |
gguf_add_tensor(ctx, layer.wk); | |
ggml_format_name(layer.wv, TN_ATTN_V, i); | |
gguf_add_tensor(ctx, layer.wv); | |
ggml_format_name(layer.wo, TN_ATTN_OUTPUT, i); | |
gguf_add_tensor(ctx, layer.wo); | |
ggml_format_name(layer.attention_norm, TN_ATTN_NORM, i); | |
gguf_add_tensor(ctx, layer.attention_norm); | |
ggml_format_name(layer.w1, TN_FFN_GATE, i); | |
gguf_add_tensor(ctx, layer.w1); | |
ggml_format_name(layer.w2, TN_FFN_DOWN, i); | |
gguf_add_tensor(ctx, layer.w2); | |
ggml_format_name(layer.w3, TN_FFN_UP, i); | |
gguf_add_tensor(ctx, layer.w3); | |
ggml_format_name(layer.ffn_norm, TN_FFN_NORM, i); | |
gguf_add_tensor(ctx, layer.ffn_norm); | |
} | |
gguf_write_to_file(ctx, filename, false); | |
gguf_free(ctx); | |
} | |
static struct train_params get_default_train_params() { | |
struct train_params params; | |
params.fn_vocab_model = "models/7B/ggml-model-f16.gguf"; | |
params.fn_llama2c_output_model = "ak_llama_model.bin"; | |
params.fn_train_data = "shakespeare.txt"; | |
params.fn_checkpoint_in = "checkpoint.bin"; | |
params.fn_checkpoint_out = "checkpoint.bin"; | |
params.fn_model_out = "ggml-checkpoint-f32.bin"; | |
params.seed = -1; | |
params.n_ctx = 128; | |
params.n_embd = 256; | |
params.n_mult = 256; | |
params.n_head = 8; | |
params.n_layer = 16; | |
params.n_rotmax = 64; | |
params.n_threads = 6; | |
params.n_batch = 8; | |
params.n_examples = 8; | |
params.n_predict = 1024; | |
params.print_info_interval = 1; | |
params.print_details_interval = 2; | |
params.samples_start_after_nl = false; | |
params.use_adam = true; | |
params.use_flash = false; | |
params.use_scratch = true; | |
// only adam | |
params.warmup = 100; | |
params.cos_decay_steps = 1000; | |
params.cos_decay_restart = 1.1f; | |
params.cos_decay_alpha = 0.0f; | |
params.lbfgs_n_iter = 16; | |
params.adam_n_iter = 16; | |
params.adam_alpha = 1e-3f; | |
params.adam_decay = 1e-3f; | |
params.mem_model_gb = 2; | |
params.mem_compute_gb = 24; | |
params.mem_compute0_gb = 8; | |
params.mem_compute1_gb = 2; | |
return params; | |
} | |
static void print_usage(int /*argc*/, char ** argv, const struct train_params * params) { | |
fprintf(stderr, "usage: %s [options]\n", argv[0]); | |
fprintf(stderr, "\n"); | |
fprintf(stderr, "options:\n"); | |
fprintf(stderr, " -h, --help show this help message and exit\n"); | |
fprintf(stderr, " --copy-vocab-from-model FNAME path of gguf llama model or llama2.c vocabulary from which to copy vocab (default '%s')\n", params->fn_vocab_model); | |
fprintf(stderr, " --llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model\n"); | |
fprintf(stderr, " --llama2c-output-model FNAME model path to save the converted llama2.c model (default %s')\n", params->fn_llama2c_output_model); | |
fprintf(stderr, "\n"); | |
} | |
static bool params_parse(int argc, char ** argv, struct train_params * params) { | |
bool invalid_param = false; | |
bool reqd_param_found = false; | |
std::string arg; | |
struct train_params default_params = get_default_train_params(); | |
const std::string arg_prefix = "--"; | |
for (int i = 1; i < argc; i++) { | |
arg = argv[i]; | |
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { | |
std::replace(arg.begin(), arg.end(), '_', '-'); | |
} | |
if (arg == "--copy-vocab-from-model") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->fn_vocab_model = argv[i]; | |
} else if (arg == "--llama2c-model") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
reqd_param_found = true; | |
params->fn_llama2c_model = argv[i]; | |
} else if (arg == "--llama2c-output-model") { | |
if (++i >= argc) { | |
invalid_param = true; | |
break; | |
} | |
params->fn_llama2c_output_model = argv[i]; | |
} else if (arg == "-h" || arg == "--help") { | |
print_usage(argc, argv, &default_params); | |
exit(0); | |
} else { | |
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); | |
print_usage(argc, argv, &default_params); | |
exit(1); | |
} | |
} | |
if (invalid_param) { | |
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); | |
print_usage(argc, argv, &default_params); | |
exit(1); | |
} | |
if (!reqd_param_found){ | |
fprintf(stderr, "error: please specify a llama2.c .bin file to be converted with argument --llama2c-model\n"); | |
print_usage(argc, argv, &default_params); | |
exit(1); | |
} | |
return true; | |
} | |
static std::string basename(const std::string &path) { | |
size_t pos = path.find_last_of("/\\"); | |
if (pos == std::string::npos) { | |
return path; | |
} | |
return path.substr(pos + 1); | |
} | |
int main(int argc, char ** argv) { | |
common_init(); | |
struct train_params params = get_default_train_params(); | |
if (!params_parse(argc, argv, ¶ms)) { | |
return 1; | |
} | |
Config config; | |
TransformerWeights weights = {}; | |
{ | |
LOG_INF("%s: Loading llama2c model from %s\n", __func__, params.fn_llama2c_model); | |
FILE * file = fopen(params.fn_llama2c_model, "rb"); | |
if (!file) { | |
LOG_ERR("%s: Unable to open the checkpoint file %s!\n", __func__, params.fn_llama2c_model); | |
return 1; | |
} | |
// read in the config header | |
if (fread(&config, sizeof(Config), 1, file) != 1) { | |
LOG_ERR("%s: Unable to read llama2c config from %s!\n",__func__,params.fn_llama2c_model); | |
return 1; | |
} | |
auto shared_weights = config.vocab_size > 0; | |
config.vocab_size = abs(config.vocab_size); | |
// read in the Transformer weights | |
alloc_weights(&weights, &config, shared_weights); | |
if (checkpoint_init_weights(&weights, &config, file, shared_weights)) { | |
LOG_ERR("%s: Unable to initialize transformer weights from %s!",__func__,params.fn_llama2c_model); | |
return 1; | |
} | |
fclose(file); | |
} | |
struct my_llama_vocab vocab; | |
load_vocab(params.fn_vocab_model, &config, &vocab); | |
struct my_llama_model model; | |
model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx); | |
model.hparams.n_ctx = params.n_ctx; | |
model.hparams.n_embd = config.dim; //params.n_embd; | |
model.hparams.n_ff = config.hidden_dim; | |
model.hparams.n_mult = 32;//params.n_mult; | |
model.hparams.n_head = config.n_heads; //params.n_head; | |
model.hparams.n_head_kv = config.n_kv_heads; | |
model.hparams.n_layer = config.n_layers; //params.n_layer; | |
model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head); | |
print_params(&model.hparams); | |
struct ggml_init_params lcparams; | |
lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb); | |
lcparams.mem_buffer = NULL; | |
lcparams.no_alloc = false; | |
model.ctx = ggml_init(lcparams); | |
init_model(&model); | |
model.name = basename(params.fn_llama2c_model); | |
save_as_llama_model(&vocab, &model, &weights, params.fn_llama2c_output_model); | |
LOG_INF("%s: Saving llama.c model file %s in ggml format at %s\n", __func__, params.fn_llama2c_model, params.fn_llama2c_output_model); | |
ggml_free(model.ctx); | |
return 0; | |
} | |