Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
from __future__ import annotations | |
import logging | |
import argparse | |
import concurrent.futures | |
import enum | |
import faulthandler | |
import functools | |
import itertools | |
import json | |
import math | |
import mmap | |
import os | |
import pickle | |
import re | |
import signal | |
import struct | |
import sys | |
import textwrap | |
import time | |
import zipfile | |
from abc import ABC, abstractmethod | |
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor | |
from dataclasses import dataclass | |
from pathlib import Path | |
from typing import TYPE_CHECKING, Any, Callable, IO, Iterable, Literal, TypeVar | |
import numpy as np | |
if 'NO_LOCAL_GGUF' not in os.environ: | |
# use .parent.parent since we are in "examples" directory | |
sys.path.insert(1, str(Path(__file__).parent.parent / 'gguf-py')) | |
import gguf | |
from gguf import BaseVocab, Vocab, NoVocab, BpeVocab, SentencePieceVocab, LlamaHfVocab | |
if TYPE_CHECKING: | |
from typing_extensions import Self, TypeAlias | |
logger = logging.getLogger("convert") | |
if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'): | |
faulthandler.register(signal.SIGUSR1) | |
NDArray: TypeAlias = 'np.ndarray[Any, Any]' | |
ARCH = gguf.MODEL_ARCH.LLAMA | |
DEFAULT_CONCURRENCY = 8 | |
ADDED_TOKENS_FILE = 'added_tokens.json' | |
FAST_TOKENIZER_FILE = 'tokenizer.json' | |
# | |
# data types | |
# | |
class DataType: | |
name: str | |
dtype: np.dtype[Any] | |
valid_conversions: list[str] | |
def elements_to_bytes(self, n_elements: int) -> int: | |
return n_elements * self.dtype.itemsize | |
class UnquantizedDataType(DataType): | |
pass | |
DT_F16 = UnquantizedDataType('F16', dtype = np.dtype(np.float16), valid_conversions = ['F32', 'Q8_0']) | |
DT_F32 = UnquantizedDataType('F32', dtype = np.dtype(np.float32), valid_conversions = ['F16', 'Q8_0']) | |
DT_I32 = UnquantizedDataType('I32', dtype = np.dtype(np.int16), valid_conversions = []) | |
DT_BF16 = UnquantizedDataType('BF16', dtype = np.dtype(np.uint16), valid_conversions = ['F32', 'F16', 'Q8_0']) | |
class QuantizedDataType(DataType): | |
block_size: int | |
quantized_dtype: np.dtype[Any] | |
ggml_type: gguf.GGMLQuantizationType | |
def quantize(self, arr: NDArray) -> NDArray: | |
raise NotImplementedError(f'Quantization for {self.name} not implemented') | |
def elements_to_bytes(self, n_elements: int) -> int: | |
assert n_elements % self.block_size == 0, f'Invalid number of elements {n_elements} for {self.name} with block size {self.block_size}' | |
return self.quantized_dtype.itemsize * (n_elements // self.block_size) | |
class Q8_0QuantizedDataType(QuantizedDataType): | |
# Mini Q8_0 quantization in Python! | |
def quantize(self, arr: NDArray) -> NDArray: | |
assert arr.size % self.block_size == 0 and arr.size != 0, f'Bad array size {arr.size}' | |
assert arr.dtype == np.float32, f'Bad array type {arr.dtype}' | |
n_blocks = arr.size // self.block_size | |
blocks = arr.reshape((n_blocks, self.block_size)) | |
# Much faster implementation of block quantization contributed by @Cebtenzzre | |
def quantize_blocks_q8_0(blocks: NDArray) -> Iterable[tuple[Any, Any]]: | |
d = abs(blocks).max(axis = 1) / np.float32(127) | |
with np.errstate(divide = 'ignore'): | |
qs = (blocks / d[:, None]).round() | |
qs[d == 0] = 0 | |
yield from zip(d, qs) | |
return np.fromiter(quantize_blocks_q8_0(blocks), count = n_blocks, dtype = self.quantized_dtype) | |
DT_Q8_0 = Q8_0QuantizedDataType('Q8_0', | |
dtype = np.dtype(np.float32), valid_conversions = [], | |
ggml_type = gguf.GGMLQuantizationType.Q8_0, block_size = 32, | |
quantized_dtype = np.dtype([('d', '<f2'), ('qs', 'i1', (32,))])) | |
# Quantized types skipped here because they may also map to np.float32 | |
NUMPY_TYPE_TO_DATA_TYPE: dict[np.dtype[Any], DataType] = {} | |
for dt in (DT_BF16, DT_F16, DT_F32, DT_I32): | |
if dt.dtype in NUMPY_TYPE_TO_DATA_TYPE: | |
raise ValueError(f'Invalid duplicate data type {dt}') | |
NUMPY_TYPE_TO_DATA_TYPE[dt.dtype] = dt | |
SAFETENSORS_DATA_TYPES: dict[str, DataType] = { | |
'BF16': DT_BF16, | |
'F16': DT_F16, | |
'F32': DT_F32, | |
'I32': DT_I32, | |
} | |
# TODO: match this with `llama_ftype` | |
# TODO: rename to LLAMAFileType | |
# TODO: move to `gguf.py` | |
class GGMLFileType(enum.IntEnum): | |
AllF32 = 0 | |
MostlyF16 = 1 # except 1d tensors | |
MostlyQ8_0 = 7 # except 1d tensors | |
def type_for_tensor(self, name: str, tensor: LazyTensor) -> DataType: | |
dt = GGML_FILE_TYPE_TO_DATA_TYPE.get(self) | |
if dt is None: | |
raise ValueError(self) | |
# Convert all 1D tensors to F32. Most of the codebase that takes in 1D tensors only handles F32 tensors, and most of the outputs tensors are F32. | |
# Also The 1d tensors aren't much of a performance/size issue. So instead of having to have separate F32 and F16 implementations of both, just convert everything to F32 for now. | |
return dt if len(tensor.shape) > 1 else DT_F32 | |
GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = { | |
GGMLFileType.AllF32 : DT_F32, | |
GGMLFileType.MostlyF16 : DT_F16, | |
GGMLFileType.MostlyQ8_0: DT_Q8_0, | |
} | |
# | |
# hparams loading | |
# | |
class Params: | |
n_vocab: int | |
n_embd: int | |
n_layer: int | |
n_ctx: int | |
n_ff: int | |
n_head: int | |
n_head_kv: int | |
n_experts: int | None = None | |
n_experts_used: int | None = None | |
f_norm_eps: float | None = None | |
rope_scaling_type: gguf.RopeScalingType | None = None | |
f_rope_freq_base: float | None = None | |
f_rope_scale: float | None = None | |
n_ctx_orig: int | None = None | |
rope_finetuned: bool | None = None | |
ftype: GGMLFileType | None = None | |
# path to the directory containing the model files | |
path_model: Path | None = None | |
def guessed(model: LazyModel) -> Params: | |
# try transformer naming first | |
n_vocab, n_embd = model["model.embed_tokens.weight"].shape if "model.embed_tokens.weight" in model else model["tok_embeddings.weight"].shape | |
# try transformer naming first | |
if "model.layers.0.self_attn.q_proj.weight" in model: | |
n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model) | |
elif "model.layers.0.self_attn.W_pack.weight" in model: # next: try baichuan naming | |
n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.W_pack.weight" not in model) | |
else: | |
n_layer = next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model) | |
if n_layer < 1: | |
msg = """\ | |
failed to guess 'n_layer'. This model is unknown or unsupported. | |
Suggestion: provide 'config.json' of the model in the same directory containing model files.""" | |
raise KeyError(textwrap.dedent(msg)) | |
n_head = n_embd // 128 # guessed | |
n_mult = 256 # guessed | |
# TODO: verify this | |
n_ff = int(2 * (4 * n_embd) / 3) | |
n_ff = n_mult * ((n_ff + n_mult - 1) // n_mult) | |
return Params( | |
n_vocab = n_vocab, | |
n_embd = n_embd, | |
n_layer = n_layer, | |
n_ctx = -1, | |
n_ff = n_ff, | |
n_head = n_head, | |
n_head_kv = n_head, | |
f_norm_eps = 1e-5, | |
) | |
def loadHFTransformerJson(model: LazyModel, config_path: Path) -> Params: | |
with open(config_path) as f: | |
config = json.load(f) | |
rope_scaling_type = f_rope_scale = n_ctx_orig = rope_finetuned = None | |
rope_scaling = config.get("rope_scaling") | |
if rope_scaling is not None and (typ := rope_scaling.get("type")): | |
rope_factor = rope_scaling.get("factor") | |
f_rope_scale = rope_factor | |
if typ == "linear": | |
rope_scaling_type = gguf.RopeScalingType.LINEAR | |
elif typ == "yarn": | |
rope_scaling_type = gguf.RopeScalingType.YARN | |
n_ctx_orig = rope_scaling['original_max_position_embeddings'] | |
rope_finetuned = rope_scaling['finetuned'] | |
else: | |
raise NotImplementedError(f'Unknown rope scaling type: {typ}') | |
if "max_sequence_length" in config: | |
n_ctx = config["max_sequence_length"] | |
elif "max_position_embeddings" in config: | |
n_ctx = config["max_position_embeddings"] | |
else: | |
msg = """\ | |
failed to guess 'n_ctx'. This model is unknown or unsupported. | |
Suggestion: provide 'config.json' of the model in the same directory containing model files.""" | |
raise KeyError(textwrap.dedent(msg)) | |
n_experts = None | |
n_experts_used = None | |
if "num_local_experts" in config: | |
n_experts = config["num_local_experts"] | |
n_experts_used = config["num_experts_per_tok"] | |
return Params( | |
n_vocab = config["vocab_size"], | |
n_embd = config["hidden_size"], | |
n_layer = config["num_hidden_layers"], | |
n_ctx = n_ctx, | |
n_ff = config["intermediate_size"], | |
n_head = (n_head := config["num_attention_heads"]), | |
n_head_kv = config.get("num_key_value_heads", n_head), | |
n_experts = n_experts, | |
n_experts_used = n_experts_used, | |
f_norm_eps = config["rms_norm_eps"], | |
f_rope_freq_base = config.get("rope_theta"), | |
rope_scaling_type = rope_scaling_type, | |
f_rope_scale = f_rope_scale, | |
n_ctx_orig = n_ctx_orig, | |
rope_finetuned = rope_finetuned, | |
) | |
# LLaMA v2 70B params.json | |
# {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1} | |
def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params: | |
with open(config_path) as f: | |
config = json.load(f) | |
n_experts = None | |
n_experts_used = None | |
f_rope_freq_base = None | |
n_ff = None | |
# hack to determine LLaMA v1 vs v2 vs CodeLlama | |
if config.get("moe"): | |
# Mixtral | |
n_ctx = 32768 | |
elif config.get("rope_theta") == 1000000: | |
# CodeLlama | |
n_ctx = 16384 | |
elif config["norm_eps"] == 1e-05: | |
# LLaMA v2 | |
n_ctx = 4096 | |
else: | |
# LLaMA v1 | |
n_ctx = 2048 | |
if "layers.0.feed_forward.w1.weight" in model: | |
n_ff = model["layers.0.feed_forward.w1.weight"].shape[0] | |
if config.get("moe"): | |
n_ff = model["layers.0.feed_forward.experts.0.w1.weight"].shape[0] | |
n_experts = config["moe"]["num_experts"] | |
n_experts_used = config["moe"]["num_experts_per_tok"] | |
f_rope_freq_base = 1e6 | |
assert n_ff is not None | |
return Params( | |
n_vocab = model["tok_embeddings.weight"].shape[0], | |
n_embd = config["dim"], | |
n_layer = config["n_layers"], | |
n_ctx = n_ctx, | |
n_ff = n_ff, | |
n_head = (n_head := config["n_heads"]), | |
n_head_kv = config.get("n_kv_heads", n_head), | |
n_experts = n_experts, | |
n_experts_used = n_experts_used, | |
f_norm_eps = config["norm_eps"], | |
f_rope_freq_base = config.get("rope_theta", f_rope_freq_base), | |
) | |
def load(model_plus: ModelPlus) -> Params: | |
hf_config_path = model_plus.paths[0].parent / "config.json" | |
orig_config_path = model_plus.paths[0].parent / "params.json" | |
if hf_config_path.exists(): | |
params = Params.loadHFTransformerJson(model_plus.model, hf_config_path) | |
elif orig_config_path.exists(): | |
params = Params.loadOriginalParamsJson(model_plus.model, orig_config_path) | |
elif model_plus.format != 'none': | |
params = Params.guessed(model_plus.model) | |
else: | |
raise ValueError('Cannot guess params when model format is none') | |
params.path_model = model_plus.paths[0].parent | |
return params | |
# | |
# data loading | |
# TODO: reuse (probably move to gguf.py?) | |
# | |
def permute(weights: NDArray, n_head: int, n_head_kv: int) -> NDArray: | |
if n_head_kv is not None and n_head != n_head_kv: | |
n_head = n_head_kv | |
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) | |
.swapaxes(1, 2) | |
.reshape(weights.shape)) | |
class Tensor(ABC): | |
ndarray: NDArray | |
data_type: DataType | |
def astype(self, data_type: DataType) -> Self: ... | |
def permute(self, n_head: int, n_head_kv: int) -> Self: ... | |
def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> Self: ... | |
def part(self, n_part: int) -> Self: ... | |
def to_ggml(self) -> GGMLCompatibleTensor: ... | |
def bf16_to_fp32(bf16_arr: np.ndarray[Any, np.dtype[np.uint16]]) -> NDArray: | |
assert bf16_arr.dtype == np.uint16, f"Input array should be of dtype uint16, but got {bf16_arr.dtype}" | |
fp32_arr = bf16_arr.astype(np.uint32) << 16 | |
return fp32_arr.view(np.float32) | |
class UnquantizedTensor(Tensor): | |
def __init__(self, ndarray: NDArray): | |
assert isinstance(ndarray, np.ndarray) | |
self.ndarray = ndarray | |
self.data_type = NUMPY_TYPE_TO_DATA_TYPE[ndarray.dtype] | |
def astype(self, data_type: DataType) -> UnquantizedTensor: | |
dtype = data_type.dtype | |
if self.data_type == DT_BF16: | |
self.ndarray = bf16_to_fp32(self.ndarray) | |
return UnquantizedTensor(self.ndarray.astype(dtype)) | |
def to_ggml(self) -> Self: | |
return self | |
def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> UnquantizedTensor: | |
r = self.ndarray.shape[0] // 3 | |
return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head, n_head_kv)) | |
def part(self, n_part: int) -> UnquantizedTensor: | |
r = self.ndarray.shape[0] // 3 | |
return UnquantizedTensor(self.ndarray[r * n_part : r * n_part + r, ...]) | |
def permute(self, n_head: int, n_head_kv: int) -> UnquantizedTensor: | |
return UnquantizedTensor(permute(self.ndarray, n_head, n_head_kv)) | |
def load_unquantized(lazy_tensor: LazyTensor, expected_dtype: Any = None, convert: bool = False) -> NDArray: | |
tensor = lazy_tensor.load() | |
assert isinstance(tensor, UnquantizedTensor) | |
# double-check: | |
actual_shape = list(tensor.ndarray.shape) | |
assert actual_shape == lazy_tensor.shape, (actual_shape, lazy_tensor.shape) | |
if expected_dtype is not None and expected_dtype != tensor.ndarray.dtype: | |
if convert: | |
tensor.ndarray = tensor.ndarray.astype(expected_dtype) | |
else: | |
raise ValueError(f'expected this tensor to have dtype {expected_dtype}, got {tensor.ndarray.dtype}') | |
return tensor.ndarray | |
GGMLCompatibleTensor = UnquantizedTensor | |
class LazyTensor: | |
_load: Callable[[], Tensor] | |
shape: list[int] | |
data_type: DataType | |
description: str | |
def load(self) -> Tensor: | |
ret = self._load() | |
# Should be okay if it maps to the same numpy type? | |
assert ret.data_type == self.data_type or (self.data_type.dtype == ret.data_type.dtype), \ | |
(self.data_type, ret.data_type, self.description) | |
return ret | |
def astype(self, data_type: DataType) -> LazyTensor: | |
self.validate_conversion_to(data_type) | |
def load() -> Tensor: | |
return self.load().astype(data_type) | |
return LazyTensor(load, self.shape, data_type, f'convert({data_type}) {self.description}') | |
def validate_conversion_to(self, data_type: DataType) -> None: | |
if data_type != self.data_type and data_type.name not in self.data_type.valid_conversions: | |
raise ValueError(f'Cannot validate conversion from {self.data_type} to {data_type}.') | |
LazyModel: TypeAlias = 'dict[str, LazyTensor]' | |
ModelFormat: TypeAlias = Literal['ggml', 'torch', 'safetensors', 'none'] | |
class ModelPlus: | |
model: LazyModel | |
paths: list[Path] # Where this was read from. | |
format: ModelFormat | |
vocab: BaseVocab | None # For GGML models (which have vocab built in), the vocab. | |
def merge_sharded(models: list[LazyModel]) -> LazyModel: | |
# Original LLaMA models have each file contain one part of each tensor. | |
# Use a dict instead of a set to preserve order. | |
names = {name: None for model in models for name in model} | |
def convert(name: str) -> LazyTensor: | |
lazy_tensors = [model[name] for model in models] | |
if len(lazy_tensors) == 1: | |
# only one file; don't go through this procedure since there might | |
# be quantized tensors | |
return lazy_tensors[0] | |
if len(lazy_tensors[0].shape) == 1: | |
# the tensor is just duplicated in every file | |
return lazy_tensors[0] | |
if name.startswith('tok_embeddings.') or \ | |
name.endswith('.attention.wo.weight') or \ | |
name.endswith('.feed_forward.w2.weight'): | |
# split by columns | |
axis = 1 | |
else: | |
# split by rows | |
axis = 0 | |
concatenated_shape = list(lazy_tensors[0].shape) | |
concatenated_shape[axis] = sum(tensor.shape[axis] for tensor in lazy_tensors) | |
def load() -> UnquantizedTensor: | |
ndarrays = [load_unquantized(tensor) for tensor in lazy_tensors] | |
concatenated = np.concatenate(ndarrays, axis=axis) | |
return UnquantizedTensor(concatenated) | |
description = 'concatenated[[' + '] | ['.join(lt.description for lt in lazy_tensors) + ']]' | |
return LazyTensor(load, concatenated_shape, lazy_tensors[0].data_type, description) | |
return {name: convert(name) for name in names} | |
def merge_multifile_models(models_plus: list[ModelPlus]) -> ModelPlus: | |
formats: set[ModelFormat] = set(mp.format for mp in models_plus) | |
assert len(formats) == 1, "different formats?" | |
format = formats.pop() | |
paths = [path for mp in models_plus for path in mp.paths] | |
# Use the first non-None vocab, if any. | |
try: | |
vocab = next(mp.vocab for mp in models_plus if mp.vocab is not None) | |
except StopIteration: | |
vocab = None | |
if any("model.embed_tokens.weight" in mp.model for mp in models_plus): | |
# Transformers models put different tensors in different files, but | |
# don't split individual tensors between files. | |
model: LazyModel = {} | |
for mp in models_plus: | |
model.update(mp.model) | |
else: | |
model = merge_sharded([mp.model for mp in models_plus]) | |
return ModelPlus(model, paths, format, vocab) | |
def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_head_kv: int) -> LazyTensor: | |
def load() -> Tensor: | |
return lazy_tensor.load().permute(n_head, n_head_kv) | |
return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description) | |
def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int, n_head_kv: int) -> LazyTensor: | |
def load() -> Tensor: | |
return lazy_tensor.load().permute_part(n_part, n_head, n_head_kv) | |
s = lazy_tensor.shape.copy() | |
s[0] = s[0] // 3 | |
return LazyTensor(load, s, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description) | |
def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor: | |
def load() -> Tensor: | |
return lazy_tensor.load().part(n_part) | |
s = lazy_tensor.shape.copy() | |
s[0] = s[0] // 3 | |
return LazyTensor(load, s, lazy_tensor.data_type, 'part ' + lazy_tensor.description) | |
def pack_experts_lazy(lazy_tensors: list[LazyTensor]) -> LazyTensor: | |
def load() -> Tensor: | |
tensors = [lazy_tensor.load() for lazy_tensor in lazy_tensors] | |
return UnquantizedTensor(np.array([tensor.ndarray for tensor in tensors])) | |
s = lazy_tensors[0].shape.copy() | |
s.insert(0, len(lazy_tensors)) | |
return LazyTensor(load, s, lazy_tensors[0].data_type, 'pack_experts ' + ' | '.join(lt.description for lt in lazy_tensors)) | |
# Functionality that simulates `torch.load` but where individual tensors are | |
# only loaded into memory on demand, not all at once. | |
# PyTorch can't do this natively as of time of writing: | |
# - https://github.com/pytorch/pytorch/issues/64327 | |
# This allows us to de-shard without multiplying RAM usage, and also | |
# conveniently drops the PyTorch dependency (though we still need numpy). | |
class LazyStorageKind: | |
data_type: DataType | |
class LazyStorage: | |
load: Callable[[int, int], NDArray] | |
kind: LazyStorageKind | |
description: str | |
class LazyUnpickler(pickle.Unpickler): | |
def __init__(self, fp: IO[bytes], data_base_path: str, zip_file: zipfile.ZipFile): | |
super().__init__(fp) | |
self.data_base_path = data_base_path | |
self.zip_file = zip_file | |
def persistent_load(self, pid: Any) -> Any: | |
assert pid[0] == 'storage' | |
assert isinstance(pid[1], LazyStorageKind) | |
data_type = pid[1].data_type | |
filename_stem = pid[2] | |
filename = f'{self.data_base_path}/{filename_stem}' | |
info = self.zip_file.getinfo(filename) | |
def load(offset: int, elm_count: int) -> NDArray: | |
dtype = data_type.dtype | |
with self.zip_file.open(info) as fp: | |
fp.seek(offset * dtype.itemsize) | |
size = elm_count * dtype.itemsize | |
data = fp.read(size) | |
assert len(data) == size | |
return np.frombuffer(data, dtype) | |
description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}' | |
return LazyStorage(load=load, kind=pid[1], description=description) | |
def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any, | |
requires_grad: Any, backward_hooks: Any, metadata: Any = None) -> LazyTensor: | |
assert isinstance(storage, LazyStorage) | |
def load() -> UnquantizedTensor: | |
elm_count = stride[0] * size[0] | |
return UnquantizedTensor(storage.load(storage_offset, elm_count).reshape(size)) | |
description = f'pickled storage_offset={storage_offset} in {storage.description}' | |
return LazyTensor(load, list(size), storage.kind.data_type, description) | |
def rebuild_from_type_v2(func, new_type, args, state): | |
return func(*args) | |
CLASSES: dict[tuple[str, str], type[LazyTensor] | LazyStorageKind] = { | |
# getattr used here as a workaround for mypy not being smart enough to determine | |
# the staticmethods have a __func__ attribute. | |
('torch._tensor', '_rebuild_from_type_v2'): getattr(rebuild_from_type_v2, '__func__'), | |
('torch._utils', '_rebuild_tensor_v2'): getattr(lazy_rebuild_tensor_v2, '__func__'), | |
('torch', 'BFloat16Storage'): LazyStorageKind(DT_BF16), | |
('torch', 'HalfStorage'): LazyStorageKind(DT_F16), | |
('torch', 'FloatStorage'): LazyStorageKind(DT_F32), | |
('torch', 'IntStorage'): LazyStorageKind(DT_I32), | |
('torch', 'Tensor'): LazyTensor, | |
} | |
def find_class(self, module: str, name: str) -> Any: | |
if not module.startswith('torch'): | |
return super().find_class(module, name) | |
return self.CLASSES[(module, name)] | |
def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus: | |
zf = zipfile.ZipFile(outer_fp) | |
pickle_paths = [name for name in zf.namelist() if name.endswith('.pkl')] | |
assert len(pickle_paths) == 1, pickle_paths | |
pickle_fp = zf.open(pickle_paths[0], 'r') | |
unpickler = LazyUnpickler(pickle_fp, | |
data_base_path=pickle_paths[0][:-4], | |
zip_file=zf) | |
model = unpickler.load() | |
if 'model' in model: model = model['model'] | |
as_dict = dict(model.items()) | |
return ModelPlus(model=as_dict, paths=[path], format='torch', vocab=None) | |
def lazy_load_safetensors_file(fp: IO[bytes], path: Path) -> ModelPlus: | |
header_size, = struct.unpack('<Q', fp.read(8)) | |
header: dict[str, dict[str, Any]] = json.loads(fp.read(header_size)) | |
# Use mmap for the actual data to avoid race conditions with the file offset. | |
mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ)) | |
byte_buf = mapped[8 + header_size:] | |
def convert(info: dict[str, Any]) -> LazyTensor: | |
data_type = SAFETENSORS_DATA_TYPES[info['dtype']] | |
numpy_dtype = data_type.dtype | |
shape: list[int] = info['shape'] | |
begin, end = info['data_offsets'] | |
assert 0 <= begin <= end <= len(byte_buf) | |
assert end - begin == math.prod(shape) * numpy_dtype.itemsize | |
buf = byte_buf[begin:end] | |
def load() -> UnquantizedTensor: | |
return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape)) | |
description = f'safetensors begin={begin} end={end} type={data_type} path={path}' | |
return LazyTensor(load, shape, data_type, description) | |
model = {name: convert(info) for (name, info) in header.items() if name != '__metadata__'} | |
return ModelPlus(model=model, paths=[path], format='safetensors', vocab=None) | |
def must_read(fp: IO[bytes], length: int) -> bytes: | |
ret = fp.read(length) | |
if len(ret) < length: | |
raise EOFError("unexpectedly reached end of file") | |
return ret | |
def lazy_load_file(path: Path) -> ModelPlus: | |
fp = open(path, 'rb') | |
first8 = fp.read(8) | |
fp.seek(0) | |
if first8[:2] == b'PK': | |
# A zip file, i.e. PyTorch format | |
return lazy_load_torch_file(fp, path) | |
elif struct.unpack('<Q', first8)[0] < 16 * 1024 * 1024: | |
# Probably safetensors | |
return lazy_load_safetensors_file(fp, path) | |
else: | |
raise ValueError(f"unknown format: {path}") | |
In = TypeVar('In') | |
Out = TypeVar('Out') | |
def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int, max_workers: int | None = None, use_processpool_executor: bool = False) -> Iterable[Out]: | |
'''Parallel map, but with backpressure. If the caller doesn't call `next` | |
fast enough, this will stop calling `func` at some point rather than | |
letting results pile up in memory. Specifically, there is a max of one | |
output value buffered per thread.''' | |
if concurrency < 2: | |
yield from map(func, iterable) | |
# Not reached. | |
iterable = iter(iterable) | |
executor_class: type[ThreadPoolExecutor] | type[ProcessPoolExecutor] | |
if use_processpool_executor: | |
executor_class = ProcessPoolExecutor | |
else: | |
executor_class = ThreadPoolExecutor | |
with executor_class(max_workers=max_workers) as executor: | |
futures: list[concurrent.futures.Future[Out]] = [] | |
done = False | |
for _ in range(concurrency): | |
try: | |
futures.append(executor.submit(func, next(iterable))) | |
except StopIteration: | |
done = True | |
break | |
while futures: | |
result = futures.pop(0).result() | |
while not done and len(futures) < concurrency: | |
try: | |
futures.append(executor.submit(func, next(iterable))) | |
except StopIteration: | |
done = True | |
break | |
yield result | |
def check_vocab_size(params: Params, vocab: BaseVocab, pad_vocab: bool = False) -> None: | |
# Handle special case where the model's vocab size is not set | |
if params.n_vocab == -1: | |
raise ValueError( | |
"The model's vocab size is set to -1 in params.json. Please update it manually." | |
+ (f" Maybe {vocab.vocab_size}?" if isinstance(vocab, Vocab) else ""), | |
) | |
if not isinstance(vocab, Vocab): | |
return # model has no vocab | |
# Check for a vocab size mismatch | |
if params.n_vocab == vocab.vocab_size: | |
logger.warning("Ignoring added_tokens.json since model matches vocab size without it.") | |
return | |
if pad_vocab and params.n_vocab > vocab.vocab_size: | |
pad_count = params.n_vocab - vocab.vocab_size | |
logger.debug( | |
f"Padding vocab with {pad_count} token(s) - <dummy00001> through <dummy{pad_count:05}>" | |
) | |
for i in range(1, pad_count + 1): | |
vocab.added_tokens_dict[f"<dummy{i:05}>"] = -1 | |
vocab.added_tokens_list.append(f"<dummy{i:05}>") | |
vocab.vocab_size = params.n_vocab | |
return | |
msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer} has {vocab.vocab_size})." | |
if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20: | |
msg += f" Most likely you are missing added_tokens.json (should be in {vocab.fname_tokenizer.parent})." | |
if vocab.vocab_size < params.n_vocab: | |
msg += " Add the --pad-vocab option and try again." | |
raise ValueError(msg) | |
class OutputFile: | |
def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE): | |
self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess) | |
def add_meta_model(self, params: Params, metadata: gguf.Metadata | None) -> None: | |
# Metadata About The Model And Its Provenence | |
name = "LLaMA" | |
if metadata is not None and metadata.name is not None: | |
name = metadata.name | |
elif params.path_model is not None: | |
name = params.path_model.name | |
elif params.n_ctx == 4096: | |
# Heuristic detection of LLaMA v2 model | |
name = "LLaMA v2" | |
self.gguf.add_name(name) | |
if metadata is not None: | |
if metadata.author is not None: | |
self.gguf.add_author(metadata.author) | |
if metadata.version is not None: | |
self.gguf.add_version(metadata.version) | |
if metadata.organization is not None: | |
self.gguf.add_organization(metadata.organization) | |
if metadata.finetune is not None: | |
self.gguf.add_finetune(metadata.finetune) | |
if metadata.basename is not None: | |
self.gguf.add_basename(metadata.basename) | |
if metadata.description is not None: | |
self.gguf.add_description(metadata.description) | |
if metadata.quantized_by is not None: | |
self.gguf.add_quantized_by(metadata.quantized_by) | |
if metadata.size_label is not None: | |
self.gguf.add_size_label(metadata.size_label) | |
if metadata.license is not None: | |
self.gguf.add_license(metadata.license) | |
if metadata.license_name is not None: | |
self.gguf.add_license_name(metadata.license_name) | |
if metadata.license_link is not None: | |
self.gguf.add_license_link(metadata.license_link) | |
if metadata.url is not None: | |
self.gguf.add_url(metadata.url) | |
if metadata.doi is not None: | |
self.gguf.add_doi(metadata.doi) | |
if metadata.uuid is not None: | |
self.gguf.add_uuid(metadata.uuid) | |
if metadata.repo_url is not None: | |
self.gguf.add_repo_url(metadata.repo_url) | |
if metadata.source_url is not None: | |
self.gguf.add_source_url(metadata.source_url) | |
if metadata.source_doi is not None: | |
self.gguf.add_source_doi(metadata.source_doi) | |
if metadata.source_uuid is not None: | |
self.gguf.add_source_uuid(metadata.source_uuid) | |
if metadata.source_repo_url is not None: | |
self.gguf.add_source_repo_url(metadata.source_repo_url) | |
if metadata.base_models is not None: | |
self.gguf.add_base_model_count(len(metadata.base_models)) | |
for key, base_model_entry in enumerate(metadata.base_models): | |
if "name" in base_model_entry: | |
self.gguf.add_base_model_name(key, base_model_entry["name"]) | |
if "author" in base_model_entry: | |
self.gguf.add_base_model_author(key, base_model_entry["author"]) | |
if "version" in base_model_entry: | |
self.gguf.add_base_model_version(key, base_model_entry["version"]) | |
if "organization" in base_model_entry: | |
self.gguf.add_base_model_organization(key, base_model_entry["organization"]) | |
if "url" in base_model_entry: | |
self.gguf.add_base_model_url(key, base_model_entry["url"]) | |
if "doi" in base_model_entry: | |
self.gguf.add_base_model_doi(key, base_model_entry["doi"]) | |
if "uuid" in base_model_entry: | |
self.gguf.add_base_model_uuid(key, base_model_entry["uuid"]) | |
if "repo_url" in base_model_entry: | |
self.gguf.add_base_model_repo_url(key, base_model_entry["repo_url"]) | |
if metadata.tags is not None: | |
self.gguf.add_tags(metadata.tags) | |
if metadata.languages is not None: | |
self.gguf.add_languages(metadata.languages) | |
if metadata.datasets is not None: | |
self.gguf.add_datasets(metadata.datasets) | |
def add_meta_arch(self, params: Params) -> None: | |
# Metadata About The Neural Architecture Itself | |
self.gguf.add_vocab_size(params.n_vocab) | |
self.gguf.add_context_length(params.n_ctx) | |
self.gguf.add_embedding_length(params.n_embd) | |
self.gguf.add_block_count(params.n_layer) | |
self.gguf.add_feed_forward_length(params.n_ff) | |
self.gguf.add_rope_dimension_count(params.n_embd // params.n_head) | |
self.gguf.add_head_count (params.n_head) | |
self.gguf.add_head_count_kv (params.n_head_kv) | |
if params.n_experts: | |
self.gguf.add_expert_count(params.n_experts) | |
if params.n_experts_used: | |
self.gguf.add_expert_used_count(params.n_experts_used) | |
if params.f_norm_eps: | |
self.gguf.add_layer_norm_rms_eps(params.f_norm_eps) | |
else: | |
raise ValueError('f_norm_eps is None') | |
if params.f_rope_freq_base is not None: | |
self.gguf.add_rope_freq_base(params.f_rope_freq_base) | |
if params.rope_scaling_type: | |
assert params.f_rope_scale is not None | |
self.gguf.add_rope_scaling_type(params.rope_scaling_type) | |
self.gguf.add_rope_scaling_factor(params.f_rope_scale) | |
if params.n_ctx_orig is not None: | |
self.gguf.add_rope_scaling_orig_ctx_len(params.n_ctx_orig) | |
if params.rope_finetuned is not None: | |
self.gguf.add_rope_scaling_finetuned(params.rope_finetuned) | |
if params.ftype is not None: | |
self.gguf.add_file_type(params.ftype) | |
def extract_vocabulary_from_model(self, vocab: Vocab) -> tuple[list[bytes], list[float], list[gguf.TokenType]]: | |
tokens = [] | |
scores = [] | |
toktypes = [] | |
# NOTE: `all_tokens` returns the base vocabulary and added tokens | |
for text, score, toktype in vocab.all_tokens(): | |
tokens.append(text) | |
scores.append(score) | |
toktypes.append(toktype) | |
assert len(tokens) == vocab.vocab_size | |
return tokens, scores, toktypes | |
def add_meta_vocab(self, vocab: Vocab) -> None: | |
# Ensure that tokenizer_model is added to the GGUF model | |
self.gguf.add_tokenizer_model(vocab.tokenizer_model) | |
# Extract model vocabulary for model conversion | |
tokens, scores, toktypes = self.extract_vocabulary_from_model(vocab) | |
# Add extracted token information for model conversion | |
self.gguf.add_token_list(tokens) | |
self.gguf.add_token_scores(scores) | |
self.gguf.add_token_types(toktypes) | |
def add_meta_special_vocab(self, svocab: gguf.SpecialVocab) -> None: | |
svocab.add_to_gguf(self.gguf) | |
def add_tensor_info(self, name: str, tensor: LazyTensor) -> None: | |
n_elements = int(np.prod(tensor.shape)) | |
raw_dtype = getattr(tensor.data_type, 'ggml_type', None) | |
data_type = getattr(tensor.data_type, 'quantized_type', None) or tensor.data_type.dtype | |
data_nbytes = tensor.data_type.elements_to_bytes(n_elements) | |
self.gguf.add_tensor_info(name, tensor.shape, data_type, data_nbytes, raw_dtype=raw_dtype) | |
def write_meta(self) -> None: | |
self.gguf.write_header_to_file() | |
self.gguf.write_kv_data_to_file() | |
def write_tensor_info(self) -> None: | |
self.gguf.write_ti_data_to_file() | |
def write_tensor_data(self, ftype: GGMLFileType, model: LazyModel, concurrency: int) -> None: | |
ndarrays_inner = bounded_parallel_map(OutputFile.do_item, model.items(), concurrency=concurrency) | |
if ftype == GGMLFileType.MostlyQ8_0: | |
ndarrays = bounded_parallel_map( | |
OutputFile.maybe_do_quantize, ndarrays_inner, concurrency=concurrency, max_workers=concurrency, | |
use_processpool_executor=True, | |
) | |
else: | |
ndarrays = map(OutputFile.maybe_do_quantize, ndarrays_inner) | |
start = time.time() | |
for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)): | |
elapsed = time.time() - start | |
size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape) | |
padi = len(str(len(model))) | |
logger.info( | |
f"[{i + 1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type.name:4} | T+{int(elapsed):4}" | |
) | |
self.gguf.write_tensor_data(ndarray) | |
def close(self) -> None: | |
self.gguf.close() | |
def write_vocab_only( | |
fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab, | |
endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, metadata: gguf.Metadata | None = None, | |
) -> None: | |
check_vocab_size(params, vocab, pad_vocab=pad_vocab) | |
of = OutputFile(fname_out, endianess=endianess) | |
# meta data | |
of.add_meta_model(params, metadata) | |
of.add_meta_arch(params) | |
of.add_meta_vocab(vocab) | |
of.add_meta_special_vocab(svocab) | |
of.write_meta() | |
of.close() | |
def do_item(item: tuple[str, LazyTensor]) -> tuple[DataType, NDArray]: | |
name, lazy_tensor = item | |
tensor = lazy_tensor.load().to_ggml() | |
return (lazy_tensor.data_type, tensor.ndarray) | |
def maybe_do_quantize(item: tuple[DataType, NDArray]) -> NDArray: | |
dt, arr = item | |
if not isinstance(dt, QuantizedDataType): | |
return arr | |
return dt.quantize(arr) | |
def write_all( | |
fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: BaseVocab, svocab: gguf.SpecialVocab, | |
concurrency: int = DEFAULT_CONCURRENCY, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, | |
pad_vocab: bool = False, | |
metadata: gguf.Metadata | None = None, | |
) -> None: | |
check_vocab_size(params, vocab, pad_vocab=pad_vocab) | |
of = OutputFile(fname_out, endianess=endianess) | |
# meta data | |
of.add_meta_model(params, metadata) | |
of.add_meta_arch(params) | |
if isinstance(vocab, Vocab): | |
of.add_meta_vocab(vocab) | |
of.add_meta_special_vocab(svocab) | |
else: # NoVocab | |
of.gguf.add_tokenizer_model(vocab.tokenizer_model) | |
# tensor info | |
for name, lazy_tensor in model.items(): | |
of.add_tensor_info(name, lazy_tensor) | |
of.write_meta() | |
of.write_tensor_info() | |
# tensor data | |
of.write_tensor_data(ftype, model, concurrency) | |
of.close() | |
def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileType: | |
wq_type = model[gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0) + ".weight"].data_type | |
if output_type_str == "f32" or (output_type_str is None and wq_type in (DT_F32, DT_BF16)): | |
return GGMLFileType.AllF32 | |
if output_type_str == "f16" or (output_type_str is None and wq_type == DT_F16): | |
return GGMLFileType.MostlyF16 | |
if output_type_str == "q8_0": | |
return GGMLFileType.MostlyQ8_0 | |
name_to_type = {name: lazy_tensor.data_type for (name, lazy_tensor) in model.items()} | |
raise ValueError(f"Unexpected combination of types: {name_to_type}") | |
def per_model_weight_count_estimation(tensors: Iterable[tuple[str, LazyTensor]]) -> tuple[int, int, int]: | |
total_params = 0 | |
shared_params = 0 | |
expert_params = 0 | |
for name, lazy_tensor in tensors: | |
# We don't need these | |
if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")): | |
continue | |
# Got A Tensor | |
sum_weights_in_tensor: int = 1 | |
# Tensor Volume | |
for dim in lazy_tensor.shape: | |
sum_weights_in_tensor *= dim | |
if ".experts." in name: | |
if ".experts.0." in name: | |
expert_params += sum_weights_in_tensor | |
else: | |
shared_params += sum_weights_in_tensor | |
total_params += sum_weights_in_tensor | |
return total_params, shared_params, expert_params | |
def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel: | |
return {name: tensor.astype(output_type.type_for_tensor(name, tensor)) | |
for (name, tensor) in model.items()} | |
def convert_model_names(model: LazyModel, params: Params, skip_unknown: bool) -> LazyModel: | |
tmap = gguf.TensorNameMap(ARCH, params.n_layer) | |
should_skip = set(gguf.MODEL_TENSOR_SKIP.get(ARCH, [])) | |
tmp = model | |
# merge experts into one tensor | |
if params.n_experts and params.n_experts > 0: | |
for i_l in range(params.n_layer): | |
for w in range(1, 4): | |
experts = [] | |
for e in range(params.n_experts): | |
if f"layers.{i_l}.feed_forward.experts.{e}.w{w}.weight" in model: | |
experts.append(model[f"layers.{i_l}.feed_forward.experts.{e}.w{w}.weight"]) | |
del tmp[f"layers.{i_l}.feed_forward.experts.{e}.w{w}.weight"] | |
elif f"model.layers.{i_l}.block_sparse_moe.experts.{e}.w{w}.weight" in model: | |
experts.append(model[f"model.layers.{i_l}.block_sparse_moe.experts.{e}.w{w}.weight"]) | |
del tmp[f"model.layers.{i_l}.block_sparse_moe.experts.{e}.w{w}.weight"] | |
else: | |
raise ValueError(f"Expert tensor not found: layers.{i_l}.feed_forward.experts.{e}.w{w}.weight") | |
tmp[f"layers.{i_l}.feed_forward.experts.w{w}.weight"] = pack_experts_lazy(experts) | |
# HF models permut or pack some of the tensors, so we need to undo that | |
for i in itertools.count(): | |
if f"model.layers.{i}.self_attn.q_proj.weight" in model: | |
logger.debug(f"Permuting layer {i}") | |
tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head, params.n_head) | |
tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head, params.n_head_kv) | |
# tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"] | |
elif f"model.layers.{i}.self_attn.W_pack.weight" in model: | |
logger.debug(f"Unpacking and permuting layer {i}") | |
tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head, params.n_head) | |
tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head, params.n_head_kv) | |
tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = part_lazy (model[f"model.layers.{i}.self_attn.W_pack.weight"], 2) | |
del tmp[f"model.layers.{i}.self_attn.W_pack.weight"] | |
else: | |
break | |
out: LazyModel = {} | |
for name, lazy_tensor in model.items(): | |
tensor_type, name_new = tmap.get_type_and_name(name, try_suffixes = (".weight", ".bias")) or (None, None) | |
if name_new is None: | |
if skip_unknown: | |
logger.warning(f"Unexpected tensor name: {name} - skipping") | |
continue | |
raise ValueError(f"Unexpected tensor name: {name}. Use --skip-unknown to ignore it (e.g. LLaVA)") | |
if tensor_type in should_skip: | |
logger.debug(f"skipping tensor {name_new}") | |
continue | |
logger.debug(f"{name:48s} -> {name_new:40s} | {lazy_tensor.data_type.name:6s} | {lazy_tensor.shape}") | |
out[name_new] = lazy_tensor | |
return out | |
def nth_multifile_path(path: Path, n: int) -> Path | None: | |
'''Given any path belonging to a multi-file model (e.g. foo.bin.1), return | |
the nth path in the model. | |
''' | |
# Support the following patterns: | |
patterns = [ | |
# - x.00.pth, x.01.pth, etc. | |
(r'\.[0-9]{2}\.pth$', f'.{n:02}.pth'), | |
# - x-00001-of-00002.bin, x-00002-of-00002.bin, etc. | |
(r'-[0-9]{5}-of-(.*)$', fr'-{n:05}-of-\1'), | |
# x.bin, x.bin.1, etc. | |
(r'(\.[0-9]+)?$', r'\1' if n == 0 else fr'\1.{n}') | |
] | |
for regex, replacement in patterns: | |
if re.search(regex, path.name): | |
new_path = path.with_name(re.sub(regex, replacement, path.name)) | |
if new_path.exists(): | |
return new_path | |
return None | |
def find_multifile_paths(path: Path) -> list[Path]: | |
'''Given any path belonging to a multi-file model (e.g. foo.bin.1), return | |
the whole list of paths in the model. | |
''' | |
ret: list[Path] = [] | |
for i in itertools.count(): | |
nth_path = nth_multifile_path(path, i) | |
if nth_path is None: | |
break | |
ret.append(nth_path) | |
if not ret: | |
# No matches. This should only happen if the file was named, e.g., | |
# foo.0, and there was no file named foo. Oh well, try to process it | |
# as a single file. | |
return [path] | |
return ret | |
def load_some_model(path: Path) -> ModelPlus: | |
'''Load a model of any supported format.''' | |
# Be extra-friendly and accept either a file or a directory: | |
if path.is_dir(): | |
# Check if it's a set of safetensors files first | |
globs = ["model-00001-of-*.safetensors", "model.safetensors", "consolidated.safetensors"] | |
files = [file for glob in globs for file in path.glob(glob)] | |
if not files: | |
# Try the PyTorch patterns too, with lower priority | |
globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt", "pytorch_model.bin"] | |
files = [file for glob in globs for file in path.glob(glob)] | |
if not files: | |
raise FileNotFoundError(f"Can't find model in directory {path}") | |
if len(files) > 1: | |
raise ValueError(f"Found multiple models in {path}, not sure which to pick: {files}") | |
path = files[0] | |
paths = find_multifile_paths(path) | |
models_plus: list[ModelPlus] = [] | |
for path in paths: | |
logger.info(f"Loading model file {path}") | |
models_plus.append(lazy_load_file(path)) | |
model_plus = merge_multifile_models(models_plus) | |
return model_plus | |
class VocabFactory: | |
_VOCAB_CLASSES: list[type[Vocab]] = [SentencePieceVocab, BpeVocab, LlamaHfVocab] | |
def __init__(self, path: Path): | |
self.path = path | |
def _create_special_vocab(self, vocab: BaseVocab, model_parent_path: Path) -> gguf.SpecialVocab: | |
load_merges = vocab.name == "bpe" | |
n_vocab = vocab.vocab_size if isinstance(vocab, Vocab) else None | |
return gguf.SpecialVocab( | |
model_parent_path, | |
load_merges=load_merges, | |
special_token_types=None, # Predetermined or passed as a parameter | |
n_vocab=n_vocab, | |
) | |
def _create_vocab_by_path(self, vocab_types: list[str]) -> Vocab: | |
vocab_classes: dict[str, type[Vocab]] = {cls.name: cls for cls in self._VOCAB_CLASSES} | |
selected_vocabs: dict[str, type[Vocab]] = {} | |
for vtype in vocab_types: | |
try: | |
selected_vocabs[vtype] = vocab_classes[vtype] | |
except KeyError: | |
raise ValueError(f"Unsupported vocabulary type {vtype}") from None | |
for vtype, cls in selected_vocabs.items(): | |
try: | |
vocab = cls(self.path) | |
break | |
except FileNotFoundError: | |
pass # ignore unavailable tokenizers | |
else: | |
raise FileNotFoundError(f"Could not find a tokenizer matching any of {vocab_types}") | |
logger.info(f"Loaded vocab file {vocab.fname_tokenizer!r}, type {vocab.name!r}") | |
return vocab | |
def load_vocab(self, vocab_types: list[str] | None, model_parent_path: Path) -> tuple[BaseVocab, gguf.SpecialVocab]: | |
vocab: BaseVocab | |
if vocab_types is None: | |
vocab = NoVocab() | |
else: | |
vocab = self._create_vocab_by_path(vocab_types) | |
# FIXME: Respect --vocab-dir? | |
special_vocab = self._create_special_vocab( | |
vocab, | |
model_parent_path, | |
) | |
return vocab, special_vocab | |
def default_convention_outfile(file_type: GGMLFileType, expert_count: int | None, model_params_count: tuple[int, int, int], metadata: gguf.Metadata) -> str: | |
name = metadata.name if metadata.name is not None else None | |
basename = metadata.basename if metadata.basename is not None else None | |
finetune = metadata.finetune if metadata.finetune is not None else None | |
version = metadata.version if metadata.version is not None else None | |
size_label = metadata.size_label if metadata.size_label is not None else gguf.size_label(*model_params_count, expert_count=expert_count or 0) | |
output_type = { | |
GGMLFileType.AllF32: "F32", | |
GGMLFileType.MostlyF16: "F16", | |
GGMLFileType.MostlyQ8_0: "Q8_0", | |
}[file_type] | |
return gguf.naming_convention(name, basename, finetune, version, size_label, output_type) | |
def default_outfile(model_paths: list[Path], file_type: GGMLFileType, expert_count: int | None, model_params_count: tuple[int, int, int], metadata: gguf.Metadata) -> Path: | |
default_filename = default_convention_outfile(file_type, expert_count, model_params_count, metadata) | |
ret = model_paths[0].parent / f"{default_filename}.gguf" | |
if ret in model_paths: | |
logger.error( | |
f"Error: Default output path ({ret}) would overwrite the input. " | |
"Please explicitly specify a path using --outfile.") | |
sys.exit(1) | |
return ret | |
def do_dump_model(model_plus: ModelPlus) -> None: | |
print(f"model_plus.paths = {model_plus.paths!r}") # noqa: NP100 | |
print(f"model_plus.format = {model_plus.format!r}") # noqa: NP100 | |
print(f"model_plus.vocab = {model_plus.vocab!r}") # noqa: NP100 | |
for name, lazy_tensor in model_plus.model.items(): | |
print(f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}") # noqa: NP100 | |
def main(args_in: list[str] | None = None) -> None: | |
output_choices = ["f32", "f16"] | |
if np.uint32(1) == np.uint32(1).newbyteorder("<"): | |
# We currently only support Q8_0 output on little endian systems. | |
output_choices.append("q8_0") | |
parser = argparse.ArgumentParser(description="Convert a LLaMA model to a GGML compatible file") | |
parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model") | |
parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file") | |
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab") | |
parser.add_argument("--no-vocab", action="store_true", help="store model without the vocab") | |
parser.add_argument("--outtype", choices=output_choices, help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)") | |
parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file") | |
parser.add_argument("--vocab-type", help="vocab types to try in order, choose from 'spm', 'bpe', 'hfft' (default: spm,hfft)", default="spm,hfft") | |
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") | |
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)") | |
parser.add_argument("--ctx", type=int, help="model training context (default: based on input)") | |
parser.add_argument("--concurrency", type=int, help=f"concurrency used for conversion (default: {DEFAULT_CONCURRENCY})", default=DEFAULT_CONCURRENCY) | |
parser.add_argument("--big-endian", action="store_true", help="model is executed on big endian machine") | |
parser.add_argument("--pad-vocab", action="store_true", help="add pad tokens when model vocab expects more than tokenizer metadata provides") | |
parser.add_argument("--skip-unknown", action="store_true", help="skip unknown tensor names instead of failing") | |
parser.add_argument("--verbose", action="store_true", help="increase output verbosity") | |
parser.add_argument("--metadata", type=Path, help="Specify the path for an authorship metadata override file") | |
parser.add_argument("--get-outfile", action="store_true", help="get calculated default outfile name") | |
parser.add_argument("--model-name", type=str, default=None, help="name of the model") | |
args = parser.parse_args(args_in) | |
if args.verbose: | |
logging.basicConfig(level=logging.DEBUG) | |
elif args.dump_single or args.dump or args.get_outfile: | |
# Avoid printing anything besides the dump output | |
logging.basicConfig(level=logging.WARNING) | |
else: | |
logging.basicConfig(level=logging.INFO) | |
model_name = args.model_name | |
dir_model = args.model | |
metadata = gguf.Metadata.load(args.metadata, dir_model, model_name) | |
if args.get_outfile: | |
model_plus = load_some_model(dir_model) | |
params = Params.load(model_plus) | |
model = convert_model_names(model_plus.model, params, args.skip_unknown) | |
model_params_count = per_model_weight_count_estimation(model_plus.model.items()) | |
ftype = pick_output_type(model, args.outtype) | |
if (metadata is None or metadata.name is None) and params.path_model is not None: | |
metadata.name = params.path_model.name | |
print(f"{default_convention_outfile(ftype, params.n_experts, model_params_count, metadata)}") # noqa: NP100 | |
return | |
if args.no_vocab and args.vocab_only: | |
raise ValueError("--vocab-only does not make sense with --no-vocab") | |
if args.dump_single: | |
model_plus = lazy_load_file(dir_model) | |
do_dump_model(model_plus) | |
return | |
if not args.vocab_only: | |
model_plus = load_some_model(dir_model) | |
else: | |
model_plus = ModelPlus(model = {}, paths = [dir_model / 'dummy'], format = 'none', vocab = None) | |
if args.dump: | |
do_dump_model(model_plus) | |
return | |
endianess = gguf.GGUFEndian.LITTLE | |
if args.big_endian: | |
endianess = gguf.GGUFEndian.BIG | |
params = None | |
if args.pad_vocab or not args.vocab_only: | |
params = Params.load(model_plus) | |
if params.n_ctx == -1: | |
if args.ctx is None: | |
msg = """\ | |
The model doesn't have a context size, and you didn't specify one with --ctx | |
Please specify one with --ctx: | |
- LLaMA v1: --ctx 2048 | |
- LLaMA v2: --ctx 4096""" | |
parser.error(textwrap.dedent(msg)) | |
params.n_ctx = args.ctx | |
if args.outtype: | |
params.ftype = { | |
"f32": GGMLFileType.AllF32, | |
"f16": GGMLFileType.MostlyF16, | |
"q8_0": GGMLFileType.MostlyQ8_0, | |
}[args.outtype] | |
logger.info(f"params = {params}") | |
model_parent_path = model_plus.paths[0].parent | |
vocab_path = Path(args.vocab_dir or dir_model or model_parent_path) | |
vocab_factory = VocabFactory(vocab_path) | |
vocab_types = None if args.no_vocab else args.vocab_type.split(",") | |
vocab, special_vocab = vocab_factory.load_vocab(vocab_types, model_parent_path) | |
if args.vocab_only: | |
assert isinstance(vocab, Vocab) | |
if not args.outfile: | |
raise ValueError("need --outfile if using --vocab-only") | |
outfile = args.outfile | |
if params is None: | |
params = Params( | |
n_vocab = vocab.vocab_size, | |
n_embd = 1, | |
n_layer = 1, | |
n_ctx = 1, | |
n_ff = 1, | |
n_head = 1, | |
n_head_kv = 1, | |
f_norm_eps = 1e-5, | |
) | |
OutputFile.write_vocab_only(outfile, params, vocab, special_vocab, | |
endianess=endianess, pad_vocab=args.pad_vocab, metadata=metadata) | |
logger.info(f"Wrote {outfile}") | |
return | |
if model_plus.vocab is not None and args.vocab_dir is None and not args.no_vocab: | |
vocab = model_plus.vocab | |
assert params is not None | |
if metadata.name is None and params.path_model is not None: | |
metadata.name = params.path_model.name | |
model_params_count = per_model_weight_count_estimation(model_plus.model.items()) | |
logger.info(f"model parameters count : {model_params_count} ({gguf.model_weight_count_rounded_notation(model_params_count[0])})") | |
logger.info(f"Vocab info: {vocab}") | |
logger.info(f"Special vocab info: {special_vocab}") | |
model = model_plus.model | |
model = convert_model_names(model, params, args.skip_unknown) | |
ftype = pick_output_type(model, args.outtype) | |
model = convert_to_output_type(model, ftype) | |
outfile = args.outfile or default_outfile(model_plus.paths, ftype, params.n_experts, model_params_count, metadata=metadata) | |
metadata.size_label = gguf.size_label(*model_params_count, expert_count=params.n_experts or 0) | |
params.ftype = ftype | |
logger.info(f"Writing {outfile}, format {ftype}") | |
OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab, | |
concurrency=args.concurrency, endianess=endianess, pad_vocab=args.pad_vocab, metadata=metadata) | |
logger.info(f"Wrote {outfile}") | |
if __name__ == '__main__': | |
main() | |