Spaces:
Runtime error
Runtime error
import argparse | |
import os | |
import torch | |
from transformers import AutoModel, AutoTokenizer | |
ap = argparse.ArgumentParser() | |
ap.add_argument("-m", "--model", help="Path to MiniCPM-V model") | |
args = ap.parse_args() | |
# find the model part that includes the the multimodal projector weights | |
model = AutoModel.from_pretrained(args.model, trust_remote_code=True, local_files_only=True) | |
checkpoint = model.state_dict() | |
# get a list of mm tensor names | |
mm_tensors = [k for k, v in checkpoint.items() if k.startswith("resampler")] | |
# store these tensors in a new dictionary and torch.save them | |
projector = {name: checkpoint[name].float() for name in mm_tensors} | |
torch.save(projector, f"{args.model}/minicpmv.projector") | |
clip_tensors = [k for k, v in checkpoint.items() if k.startswith("vpm")] | |
if len(clip_tensors) > 0: | |
clip = {name.replace("vpm.", ""): checkpoint[name].float() for name in clip_tensors} | |
torch.save(clip, f"{args.model}/minicpmv.clip") | |
# added tokens should be removed to be able to convert Mistral models | |
if os.path.exists(f"{args.model}/added_tokens.json"): | |
with open(f"{args.model}/added_tokens.json", "w") as f: | |
f.write("{}\n") | |
config = model.llm.config | |
config.auto_map = { | |
"AutoConfig": "configuration_minicpm.MiniCPMConfig", | |
"AutoModel": "modeling_minicpm.MiniCPMModel", | |
"AutoModelForCausalLM": "modeling_minicpm.MiniCPMForCausalLM", | |
"AutoModelForSeq2SeqLM": "modeling_minicpm.MiniCPMForCausalLM", | |
"AutoModelForSequenceClassification": "modeling_minicpm.MiniCPMForSequenceClassification" | |
} | |
model.llm.save_pretrained(f"{args.model}/model") | |
tok = AutoTokenizer.from_pretrained(args.model, trust_remote_code=True) | |
tok.save_pretrained(f"{args.model}/model") | |
print("Done!") | |
print(f"Now you can convert {args.model} to a regular LLaMA GGUF file.") | |
print(f"Also, use {args.model}/minicpmv.projector to prepare a minicpmv-encoder.gguf file.") | |