Spaces:
Runtime error
Runtime error
// TODO: use everywhere in the implementation | |
extern "C" { | |
// | |
// C interface | |
// | |
// TODO: show sample usage | |
// | |
// struct llama_vocab; // TODO: add in the future | |
struct llama_model; | |
struct llama_context; | |
struct llama_sampler; | |
typedef int32_t llama_pos; | |
typedef int32_t llama_token; | |
typedef int32_t llama_seq_id; | |
enum llama_vocab_type { | |
LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab | |
LLAMA_VOCAB_TYPE_SPM = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback | |
LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE | |
LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece | |
LLAMA_VOCAB_TYPE_UGM = 4, // T5 tokenizer based on Unigram | |
LLAMA_VOCAB_TYPE_RWKV = 5, // RWKV tokenizer based on greedy tokenization | |
}; | |
// pre-tokenization types | |
enum llama_vocab_pre_type { | |
LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0, | |
LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1, | |
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2, | |
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3, | |
LLAMA_VOCAB_PRE_TYPE_FALCON = 4, | |
LLAMA_VOCAB_PRE_TYPE_MPT = 5, | |
LLAMA_VOCAB_PRE_TYPE_STARCODER = 6, | |
LLAMA_VOCAB_PRE_TYPE_GPT2 = 7, | |
LLAMA_VOCAB_PRE_TYPE_REFACT = 8, | |
LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9, | |
LLAMA_VOCAB_PRE_TYPE_STABLELM2 = 10, | |
LLAMA_VOCAB_PRE_TYPE_QWEN2 = 11, | |
LLAMA_VOCAB_PRE_TYPE_OLMO = 12, | |
LLAMA_VOCAB_PRE_TYPE_DBRX = 13, | |
LLAMA_VOCAB_PRE_TYPE_SMAUG = 14, | |
LLAMA_VOCAB_PRE_TYPE_PORO = 15, | |
LLAMA_VOCAB_PRE_TYPE_CHATGLM3 = 16, | |
LLAMA_VOCAB_PRE_TYPE_CHATGLM4 = 17, | |
LLAMA_VOCAB_PRE_TYPE_VIKING = 18, | |
LLAMA_VOCAB_PRE_TYPE_JAIS = 19, | |
LLAMA_VOCAB_PRE_TYPE_TEKKEN = 20, | |
LLAMA_VOCAB_PRE_TYPE_SMOLLM = 21, | |
LLAMA_VOCAB_PRE_TYPE_CODESHELL = 22, | |
LLAMA_VOCAB_PRE_TYPE_BLOOM = 23, | |
LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH = 24, | |
LLAMA_VOCAB_PRE_TYPE_EXAONE = 25, | |
LLAMA_VOCAB_PRE_TYPE_CHAMELEON = 26, | |
}; | |
enum llama_rope_type { | |
LLAMA_ROPE_TYPE_NONE = -1, | |
LLAMA_ROPE_TYPE_NORM = 0, | |
LLAMA_ROPE_TYPE_NEOX = GGML_ROPE_TYPE_NEOX, | |
}; | |
enum llama_token_type { //TODO: remove, required until per token attributes are available from GGUF file | |
LLAMA_TOKEN_TYPE_UNDEFINED = 0, | |
LLAMA_TOKEN_TYPE_NORMAL = 1, | |
LLAMA_TOKEN_TYPE_UNKNOWN = 2, | |
LLAMA_TOKEN_TYPE_CONTROL = 3, | |
LLAMA_TOKEN_TYPE_USER_DEFINED = 4, | |
LLAMA_TOKEN_TYPE_UNUSED = 5, | |
LLAMA_TOKEN_TYPE_BYTE = 6, | |
}; | |
enum llama_token_attr { | |
LLAMA_TOKEN_ATTR_UNDEFINED = 0, | |
LLAMA_TOKEN_ATTR_UNKNOWN = 1 << 0, | |
LLAMA_TOKEN_ATTR_UNUSED = 1 << 1, | |
LLAMA_TOKEN_ATTR_NORMAL = 1 << 2, | |
LLAMA_TOKEN_ATTR_CONTROL = 1 << 3, // SPECIAL? | |
LLAMA_TOKEN_ATTR_USER_DEFINED = 1 << 4, | |
LLAMA_TOKEN_ATTR_BYTE = 1 << 5, | |
LLAMA_TOKEN_ATTR_NORMALIZED = 1 << 6, | |
LLAMA_TOKEN_ATTR_LSTRIP = 1 << 7, | |
LLAMA_TOKEN_ATTR_RSTRIP = 1 << 8, | |
LLAMA_TOKEN_ATTR_SINGLE_WORD = 1 << 9, | |
}; | |
// model file types | |
enum llama_ftype { | |
LLAMA_FTYPE_ALL_F32 = 0, | |
LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors | |
// LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16 | |
// LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed | |
// LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed | |
LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_BF16 = 32, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_Q4_0_4_4 = 33, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_Q4_0_4_8 = 34, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_Q4_0_8_8 = 35, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_TQ1_0 = 36, // except 1d tensors | |
LLAMA_FTYPE_MOSTLY_TQ2_0 = 37, // except 1d tensors | |
LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file | |
}; | |
enum llama_rope_scaling_type { | |
LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1, | |
LLAMA_ROPE_SCALING_TYPE_NONE = 0, | |
LLAMA_ROPE_SCALING_TYPE_LINEAR = 1, | |
LLAMA_ROPE_SCALING_TYPE_YARN = 2, | |
LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN, | |
}; | |
enum llama_pooling_type { | |
LLAMA_POOLING_TYPE_UNSPECIFIED = -1, | |
LLAMA_POOLING_TYPE_NONE = 0, | |
LLAMA_POOLING_TYPE_MEAN = 1, | |
LLAMA_POOLING_TYPE_CLS = 2, | |
LLAMA_POOLING_TYPE_LAST = 3, | |
LLAMA_POOLING_TYPE_RANK = 4, // used by reranking models to attach the classification head to the graph | |
}; | |
enum llama_attention_type { | |
LLAMA_ATTENTION_TYPE_UNSPECIFIED = -1, | |
LLAMA_ATTENTION_TYPE_CAUSAL = 0, | |
LLAMA_ATTENTION_TYPE_NON_CAUSAL = 1, | |
}; | |
enum llama_split_mode { | |
LLAMA_SPLIT_MODE_NONE = 0, // single GPU | |
LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs | |
LLAMA_SPLIT_MODE_ROW = 2, // split layers and KV across GPUs, use tensor parallelism if supported | |
}; | |
// TODO: simplify (https://github.com/ggerganov/llama.cpp/pull/9294#pullrequestreview-2286561979) | |
typedef struct llama_token_data { | |
llama_token id; // token id | |
float logit; // log-odds of the token | |
float p; // probability of the token | |
} llama_token_data; | |
typedef struct llama_token_data_array { | |
// TODO: consider SoA | |
// NOTE: this pointer can be modified by the samplers | |
llama_token_data * data; | |
size_t size; | |
int64_t selected; // this is the index in the data array (i.e. not the token id) | |
bool sorted; | |
} llama_token_data_array; | |
typedef bool (*llama_progress_callback)(float progress, void * user_data); | |
// Input data for llama_decode | |
// A llama_batch object can contain input about one or many sequences | |
// The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens | |
// | |
// - token : the token ids of the input (used when embd is NULL) | |
// - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL) | |
// - pos : the positions of the respective token in the sequence | |
// (if set to NULL, the token position will be tracked automatically by llama_decode) | |
// - seq_id : the sequence to which the respective token belongs | |
// (if set to NULL, the sequence ID will be assumed to be 0) | |
// - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output | |
// (if set to NULL, only the logits for last token will be returned) | |
// | |
typedef struct llama_batch { | |
int32_t n_tokens; | |
llama_token * token; | |
float * embd; | |
llama_pos * pos; | |
int32_t * n_seq_id; | |
llama_seq_id ** seq_id; | |
int8_t * logits; // TODO: rename this to "output" | |
} llama_batch; | |
enum llama_model_kv_override_type { | |
LLAMA_KV_OVERRIDE_TYPE_INT, | |
LLAMA_KV_OVERRIDE_TYPE_FLOAT, | |
LLAMA_KV_OVERRIDE_TYPE_BOOL, | |
LLAMA_KV_OVERRIDE_TYPE_STR, | |
}; | |
struct llama_model_kv_override { | |
enum llama_model_kv_override_type tag; | |
char key[128]; | |
union { | |
int64_t val_i64; | |
double val_f64; | |
bool val_bool; | |
char val_str[128]; | |
}; | |
}; | |
struct llama_model_params { | |
int32_t n_gpu_layers; // number of layers to store in VRAM | |
enum llama_split_mode split_mode; // how to split the model across multiple GPUs | |
// the GPU that is used for the entire model when split_mode is LLAMA_SPLIT_MODE_NONE | |
int32_t main_gpu; | |
// proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices() | |
const float * tensor_split; | |
// comma separated list of RPC servers to use for offloading | |
const char * rpc_servers; | |
// Called with a progress value between 0.0 and 1.0. Pass NULL to disable. | |
// If the provided progress_callback returns true, model loading continues. | |
// If it returns false, model loading is immediately aborted. | |
llama_progress_callback progress_callback; | |
// context pointer passed to the progress callback | |
void * progress_callback_user_data; | |
// override key-value pairs of the model meta data | |
const struct llama_model_kv_override * kv_overrides; | |
// Keep the booleans together to avoid misalignment during copy-by-value. | |
bool vocab_only; // only load the vocabulary, no weights | |
bool use_mmap; // use mmap if possible | |
bool use_mlock; // force system to keep model in RAM | |
bool check_tensors; // validate model tensor data | |
}; | |
// NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations | |
// https://github.com/ggerganov/llama.cpp/pull/7544 | |
struct llama_context_params { | |
uint32_t n_ctx; // text context, 0 = from model | |
uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode | |
uint32_t n_ubatch; // physical maximum batch size | |
uint32_t n_seq_max; // max number of sequences (i.e. distinct states for recurrent models) | |
int32_t n_threads; // number of threads to use for generation | |
int32_t n_threads_batch; // number of threads to use for batch processing | |
enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type` | |
enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id | |
enum llama_attention_type attention_type; // attention type to use for embeddings | |
// ref: https://github.com/ggerganov/llama.cpp/pull/2054 | |
float rope_freq_base; // RoPE base frequency, 0 = from model | |
float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model | |
float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model | |
float yarn_attn_factor; // YaRN magnitude scaling factor | |
float yarn_beta_fast; // YaRN low correction dim | |
float yarn_beta_slow; // YaRN high correction dim | |
uint32_t yarn_orig_ctx; // YaRN original context size | |
float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default) | |
ggml_backend_sched_eval_callback cb_eval; | |
void * cb_eval_user_data; | |
enum ggml_type type_k; // data type for K cache [EXPERIMENTAL] | |
enum ggml_type type_v; // data type for V cache [EXPERIMENTAL] | |
// Keep the booleans together and at the end of the struct to avoid misalignment during copy-by-value. | |
// TODO: move at the end of the struct | |
bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead) | |
bool embeddings; // if true, extract embeddings (together with logits) | |
bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU | |
bool flash_attn; // whether to use flash attention [EXPERIMENTAL] | |
bool no_perf; // whether to measure performance timings | |
// Abort callback | |
// if it returns true, execution of llama_decode() will be aborted | |
// currently works only with CPU execution | |
ggml_abort_callback abort_callback; | |
void * abort_callback_data; | |
}; | |
// model quantization parameters | |
typedef struct llama_model_quantize_params { | |
int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency() | |
enum llama_ftype ftype; // quantize to this llama_ftype | |
enum ggml_type output_tensor_type; // output tensor type | |
enum ggml_type token_embedding_type; // token embeddings tensor type | |
bool allow_requantize; // allow quantizing non-f32/f16 tensors | |
bool quantize_output_tensor; // quantize output.weight | |
bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored | |
bool pure; // quantize all tensors to the default type | |
bool keep_split; // quantize to the same number of shards | |
void * imatrix; // pointer to importance matrix data | |
void * kv_overrides; // pointer to vector containing overrides | |
} llama_model_quantize_params; | |
typedef struct llama_logit_bias { | |
llama_token token; | |
float bias; | |
} llama_logit_bias; | |
typedef struct llama_sampler_chain_params { | |
bool no_perf; // whether to measure performance timings | |
} llama_sampler_chain_params; | |
// used in chat template | |
typedef struct llama_chat_message { | |
const char * role; | |
const char * content; | |
} llama_chat_message; | |
// lora adapter | |
struct llama_lora_adapter; | |
// Helpers for getting default parameters | |
// TODO: update API to start accepting pointers to params structs (https://github.com/ggerganov/llama.cpp/discussions/9172) | |
LLAMA_API struct llama_model_params llama_model_default_params(void); | |
LLAMA_API struct llama_context_params llama_context_default_params(void); | |
LLAMA_API struct llama_sampler_chain_params llama_sampler_chain_default_params(void); | |
LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void); | |
// Initialize the llama + ggml backend | |
// If numa is true, use NUMA optimizations | |
// Call once at the start of the program | |
LLAMA_API void llama_backend_init(void); | |
//optional: | |
LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa); | |
// Optional: an auto threadpool gets created in ggml if not passed explicitly | |
LLAMA_API void llama_attach_threadpool( | |
struct llama_context * ctx, | |
ggml_threadpool_t threadpool, | |
ggml_threadpool_t threadpool_batch); | |
LLAMA_API void llama_detach_threadpool(struct llama_context * ctx); | |
// Call once at the end of the program - currently only used for MPI | |
LLAMA_API void llama_backend_free(void); | |
LLAMA_API struct llama_model * llama_load_model_from_file( | |
const char * path_model, | |
struct llama_model_params params); | |
LLAMA_API void llama_free_model(struct llama_model * model); | |
// TODO: rename to llama_init_from_model | |
LLAMA_API struct llama_context * llama_new_context_with_model( | |
struct llama_model * model, | |
struct llama_context_params params); | |
// Frees all allocated memory | |
LLAMA_API void llama_free(struct llama_context * ctx); | |
LLAMA_API int64_t llama_time_us(void); | |
LLAMA_API size_t llama_max_devices(void); | |
LLAMA_API bool llama_supports_mmap (void); | |
LLAMA_API bool llama_supports_mlock (void); | |
LLAMA_API bool llama_supports_gpu_offload(void); | |
LLAMA_API bool llama_supports_rpc (void); | |
LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx); | |
LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx); | |
LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx); | |
LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx); | |
LLAMA_API int32_t llama_n_vocab (const struct llama_model * model); | |
LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model); | |
LLAMA_API int32_t llama_n_embd (const struct llama_model * model); | |
LLAMA_API int32_t llama_n_layer (const struct llama_model * model); | |
LLAMA_API int32_t llama_n_head (const struct llama_model * model); | |
LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx); | |
LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx); | |
LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model); | |
LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model); | |
// Get the model's RoPE frequency scaling factor | |
LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model); | |
// Functions to access the model's GGUF metadata scalar values | |
// - The functions return the length of the string on success, or -1 on failure | |
// - The output string is always null-terminated and cleared on failure | |
// - GGUF array values are not supported by these functions | |
// Get metadata value as a string by key name | |
LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size); | |
// Get the number of metadata key/value pairs | |
LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model); | |
// Get metadata key name by index | |
LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size); | |
// Get metadata value as a string by index | |
LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size); | |
// Get a string describing the model type | |
LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size); | |
// Returns the total size of all the tensors in the model in bytes | |
LLAMA_API uint64_t llama_model_size(const struct llama_model * model); | |
// Returns the total number of parameters in the model | |
LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model); | |
// Get a llama model tensor | |
LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name); | |
// Returns true if the model contains an encoder that requires llama_encode() call | |
LLAMA_API bool llama_model_has_encoder(const struct llama_model * model); | |
// Returns true if the model contains a decoder that requires llama_decode() call | |
LLAMA_API bool llama_model_has_decoder(const struct llama_model * model); | |
// For encoder-decoder models, this function returns id of the token that must be provided | |
// to the decoder to start generating output sequence. For other models, it returns -1. | |
LLAMA_API llama_token llama_model_decoder_start_token(const struct llama_model * model); | |
// Returns true if the model is recurrent (like Mamba, RWKV, etc.) | |
LLAMA_API bool llama_model_is_recurrent(const struct llama_model * model); | |
// Returns 0 on success | |
LLAMA_API uint32_t llama_model_quantize( | |
const char * fname_inp, | |
const char * fname_out, | |
const llama_model_quantize_params * params); | |
// Load a LoRA adapter from file | |
// The loaded adapter will be associated to the given model, and will be free when the model is deleted | |
LLAMA_API struct llama_lora_adapter * llama_lora_adapter_init( | |
struct llama_model * model, | |
const char * path_lora); | |
// Add a loaded LoRA adapter to given context | |
// This will not modify model's weight | |
LLAMA_API int32_t llama_lora_adapter_set( | |
struct llama_context * ctx, | |
struct llama_lora_adapter * adapter, | |
float scale); | |
// Remove a specific LoRA adapter from given context | |
// Return -1 if the adapter is not present in the context | |
LLAMA_API int32_t llama_lora_adapter_remove( | |
struct llama_context * ctx, | |
struct llama_lora_adapter * adapter); | |
// Remove all LoRA adapters from given context | |
LLAMA_API void llama_lora_adapter_clear( | |
struct llama_context * ctx); | |
// Manually free a LoRA adapter | |
// Note: loaded adapters will be free when the associated model is deleted | |
LLAMA_API void llama_lora_adapter_free(struct llama_lora_adapter * adapter); | |
// Apply a loaded control vector to a llama_context, or if data is NULL, clear | |
// the currently loaded vector. | |
// n_embd should be the size of a single layer's control, and data should point | |
// to an n_embd x n_layers buffer starting from layer 1. | |
// il_start and il_end are the layer range the vector should apply to (both inclusive) | |
// See llama_control_vector_load in common to load a control vector. | |
LLAMA_API int32_t llama_control_vector_apply( | |
struct llama_context * lctx, | |
const float * data, | |
size_t len, | |
int32_t n_embd, | |
int32_t il_start, | |
int32_t il_end); | |
// | |
// KV cache | |
// | |
// Information associated with an individual cell in the KV cache view. | |
struct llama_kv_cache_view_cell { | |
// The position for this cell. Takes KV cache shifts into account. | |
// May be negative if the cell is not populated. | |
llama_pos pos; | |
}; | |
// An updateable view of the KV cache. | |
struct llama_kv_cache_view { | |
// Number of KV cache cells. This will be the same as the context size. | |
int32_t n_cells; | |
// Maximum number of sequences that can exist in a cell. It's not an error | |
// if there are more sequences in a cell than this value, however they will | |
// not be visible in the view cells_sequences. | |
int32_t n_seq_max; | |
// Number of tokens in the cache. For example, if there are two populated | |
// cells, the first with 1 sequence id in it and the second with 2 sequence | |
// ids then you'll have 3 tokens. | |
int32_t token_count; | |
// Number of populated cache cells. | |
int32_t used_cells; | |
// Maximum contiguous empty slots in the cache. | |
int32_t max_contiguous; | |
// Index to the start of the max_contiguous slot range. Can be negative | |
// when cache is full. | |
int32_t max_contiguous_idx; | |
// Information for an individual cell. | |
struct llama_kv_cache_view_cell * cells; | |
// The sequences for each cell. There will be n_seq_max items per cell. | |
llama_seq_id * cells_sequences; | |
}; | |
// Create an empty KV cache view. (use only for debugging purposes) | |
LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max); | |
// Free a KV cache view. (use only for debugging purposes) | |
LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view); | |
// Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes) | |
LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view); | |
// Returns the number of tokens in the KV cache (slow, use only for debug) | |
// If a KV cell has multiple sequences assigned to it, it will be counted multiple times | |
LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx); | |
// Returns the number of used KV cells (i.e. have at least one sequence assigned to them) | |
LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx); | |
// Clear the KV cache - both cell info is erased and KV data is zeroed | |
LLAMA_API void llama_kv_cache_clear( | |
struct llama_context * ctx); | |
// Removes all tokens that belong to the specified sequence and have positions in [p0, p1) | |
// Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails | |
// seq_id < 0 : match any sequence | |
// p0 < 0 : [0, p1] | |
// p1 < 0 : [p0, inf) | |
LLAMA_API bool llama_kv_cache_seq_rm( | |
struct llama_context * ctx, | |
llama_seq_id seq_id, | |
llama_pos p0, | |
llama_pos p1); | |
// Copy all tokens that belong to the specified sequence to another sequence | |
// Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence | |
// p0 < 0 : [0, p1] | |
// p1 < 0 : [p0, inf) | |
LLAMA_API void llama_kv_cache_seq_cp( | |
struct llama_context * ctx, | |
llama_seq_id seq_id_src, | |
llama_seq_id seq_id_dst, | |
llama_pos p0, | |
llama_pos p1); | |
// Removes all tokens that do not belong to the specified sequence | |
LLAMA_API void llama_kv_cache_seq_keep( | |
struct llama_context * ctx, | |
llama_seq_id seq_id); | |
// Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1) | |
// If the KV cache is RoPEd, the KV data is updated accordingly: | |
// - lazily on next llama_decode() | |
// - explicitly with llama_kv_cache_update() | |
// p0 < 0 : [0, p1] | |
// p1 < 0 : [p0, inf) | |
LLAMA_API void llama_kv_cache_seq_add( | |
struct llama_context * ctx, | |
llama_seq_id seq_id, | |
llama_pos p0, | |
llama_pos p1, | |
llama_pos delta); | |
// Integer division of the positions by factor of `d > 1` | |
// If the KV cache is RoPEd, the KV data is updated accordingly: | |
// - lazily on next llama_decode() | |
// - explicitly with llama_kv_cache_update() | |
// p0 < 0 : [0, p1] | |
// p1 < 0 : [p0, inf) | |
LLAMA_API void llama_kv_cache_seq_div( | |
struct llama_context * ctx, | |
llama_seq_id seq_id, | |
llama_pos p0, | |
llama_pos p1, | |
int d); | |
// Returns the largest position present in the KV cache for the specified sequence | |
LLAMA_API llama_pos llama_kv_cache_seq_pos_max( | |
struct llama_context * ctx, | |
llama_seq_id seq_id); | |
// Defragment the KV cache | |
// This will be applied: | |
// - lazily on next llama_decode() | |
// - explicitly with llama_kv_cache_update() | |
LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx); | |
// Apply the KV cache updates (such as K-shifts, defragmentation, etc.) | |
LLAMA_API void llama_kv_cache_update(struct llama_context * ctx); | |
// | |
// State / sessions | |
// | |
// Returns the *actual* size in bytes of the state | |
// (logits, embedding and kv_cache) | |
// Only use when saving the state, not when restoring it, otherwise the size may be too small. | |
LLAMA_API size_t llama_state_get_size(struct llama_context * ctx); | |
LLAMA_API DEPRECATED(size_t llama_get_state_size(struct llama_context * ctx), | |
"use llama_state_get_size instead"); | |
// Copies the state to the specified destination address. | |
// Destination needs to have allocated enough memory. | |
// Returns the number of bytes copied | |
LLAMA_API size_t llama_state_get_data( | |
struct llama_context * ctx, | |
uint8_t * dst, | |
size_t size); | |
LLAMA_API DEPRECATED(size_t llama_copy_state_data( | |
struct llama_context * ctx, | |
uint8_t * dst), | |
"use llama_state_get_data instead"); | |
// Set the state reading from the specified address | |
// Returns the number of bytes read | |
LLAMA_API size_t llama_state_set_data( | |
struct llama_context * ctx, | |
const uint8_t * src, | |
size_t size); | |
LLAMA_API DEPRECATED(size_t llama_set_state_data( | |
struct llama_context * ctx, | |
const uint8_t * src), | |
"use llama_state_set_data instead"); | |
// Save/load session file | |
LLAMA_API bool llama_state_load_file( | |
struct llama_context * ctx, | |
const char * path_session, | |
llama_token * tokens_out, | |
size_t n_token_capacity, | |
size_t * n_token_count_out); | |
LLAMA_API DEPRECATED(bool llama_load_session_file( | |
struct llama_context * ctx, | |
const char * path_session, | |
llama_token * tokens_out, | |
size_t n_token_capacity, | |
size_t * n_token_count_out), | |
"use llama_state_load_file instead"); | |
LLAMA_API bool llama_state_save_file( | |
struct llama_context * ctx, | |
const char * path_session, | |
const llama_token * tokens, | |
size_t n_token_count); | |
LLAMA_API DEPRECATED(bool llama_save_session_file( | |
struct llama_context * ctx, | |
const char * path_session, | |
const llama_token * tokens, | |
size_t n_token_count), | |
"use llama_state_save_file instead"); | |
// Get the exact size needed to copy the KV cache of a single sequence | |
LLAMA_API size_t llama_state_seq_get_size( | |
struct llama_context * ctx, | |
llama_seq_id seq_id); | |
// Copy the KV cache of a single sequence into the specified buffer | |
LLAMA_API size_t llama_state_seq_get_data( | |
struct llama_context * ctx, | |
uint8_t * dst, | |
size_t size, | |
llama_seq_id seq_id); | |
// Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence | |
// Returns: | |
// - Positive: Ok | |
// - Zero: Failed to load | |
LLAMA_API size_t llama_state_seq_set_data( | |
struct llama_context * ctx, | |
const uint8_t * src, | |
size_t size, | |
llama_seq_id dest_seq_id); | |
LLAMA_API size_t llama_state_seq_save_file( | |
struct llama_context * ctx, | |
const char * filepath, | |
llama_seq_id seq_id, | |
const llama_token * tokens, | |
size_t n_token_count); | |
LLAMA_API size_t llama_state_seq_load_file( | |
struct llama_context * ctx, | |
const char * filepath, | |
llama_seq_id dest_seq_id, | |
llama_token * tokens_out, | |
size_t n_token_capacity, | |
size_t * n_token_count_out); | |
// | |
// Decoding | |
// | |
// Return batch for single sequence of tokens | |
// The sequence ID will be fixed to 0 | |
// The position of the tokens will be tracked automatically by llama_decode | |
// | |
// NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it | |
// | |
LLAMA_API struct llama_batch llama_batch_get_one( | |
llama_token * tokens, | |
int32_t n_tokens); | |
// Allocates a batch of tokens on the heap that can hold a maximum of n_tokens | |
// Each token can be assigned up to n_seq_max sequence ids | |
// The batch has to be freed with llama_batch_free() | |
// If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float) | |
// Otherwise, llama_batch.token will be allocated to store n_tokens llama_token | |
// The rest of the llama_batch members are allocated with size n_tokens | |
// All members are left uninitialized | |
LLAMA_API struct llama_batch llama_batch_init( | |
int32_t n_tokens, | |
int32_t embd, | |
int32_t n_seq_max); | |
// Frees a batch of tokens allocated with llama_batch_init() | |
LLAMA_API void llama_batch_free(struct llama_batch batch); | |
// Processes a batch of tokens with the ecoder part of the encoder-decoder model. | |
// Stores the encoder output internally for later use by the decoder cross-attention layers. | |
// 0 - success | |
// < 0 - error | |
LLAMA_API int32_t llama_encode( | |
struct llama_context * ctx, | |
struct llama_batch batch); | |
// Positive return values does not mean a fatal error, but rather a warning. | |
// 0 - success | |
// 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context) | |
// < 0 - error | |
LLAMA_API int32_t llama_decode( | |
struct llama_context * ctx, | |
struct llama_batch batch); | |
// Set the number of threads used for decoding | |
// n_threads is the number of threads used for generation (single token) | |
// n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens) | |
LLAMA_API void llama_set_n_threads(struct llama_context * ctx, int32_t n_threads, int32_t n_threads_batch); | |
// Get the number of threads used for generation of a single token. | |
LLAMA_API int32_t llama_n_threads(struct llama_context * ctx); | |
// Get the number of threads used for prompt and batch processing (multiple token). | |
LLAMA_API int32_t llama_n_threads_batch(struct llama_context * ctx); | |
// Set whether the model is in embeddings mode or not | |
// If true, embeddings will be returned but logits will not | |
LLAMA_API void llama_set_embeddings(struct llama_context * ctx, bool embeddings); | |
// Set whether to use causal attention or not | |
// If set to true, the model will only attend to the past tokens | |
LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn); | |
// Set abort callback | |
LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data); | |
// Wait until all computations are finished | |
// This is automatically done when using one of the functions below to obtain the computation results | |
// and is not necessary to call it explicitly in most cases | |
LLAMA_API void llama_synchronize(struct llama_context * ctx); | |
// Token logits obtained from the last call to llama_decode() | |
// The logits for which llama_batch.logits[i] != 0 are stored contiguously | |
// in the order they have appeared in the batch. | |
// Rows: number of tokens for which llama_batch.logits[i] != 0 | |
// Cols: n_vocab | |
LLAMA_API float * llama_get_logits(struct llama_context * ctx); | |
// Logits for the ith token. For positive indices, Equivalent to: | |
// llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab | |
// Negative indicies can be used to access logits in reverse order, -1 is the last logit. | |
// returns NULL for invalid ids. | |
LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i); | |
// Get all output token embeddings. | |
// when pooling_type == LLAMA_POOLING_TYPE_NONE or when using a generative model, | |
// the embeddings for which llama_batch.logits[i] != 0 are stored contiguously | |
// in the order they have appeared in the batch. | |
// shape: [n_outputs*n_embd] | |
// Otherwise, returns NULL. | |
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx); | |
// Get the embeddings for the ith token. For positive indices, Equivalent to: | |
// llama_get_embeddings(ctx) + ctx->output_ids[i]*n_embd | |
// Negative indicies can be used to access embeddings in reverse order, -1 is the last embedding. | |
// shape: [n_embd] (1-dimensional) | |
// returns NULL for invalid ids. | |
LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i); | |
// Get the embeddings for a sequence id | |
// Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE | |
// when pooling_type == LLAMA_POOLING_TYPE_RANK, returns float[1] with the rank of the sequence | |
// otherwise: float[n_embd] (1-dimensional) | |
LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id); | |
// | |
// Vocab | |
// | |
LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token); | |
LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token); | |
LLAMA_API enum llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token); | |
// Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.) | |
LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token); | |
// Identify if Token Id is a control token or a render-able token | |
LLAMA_API bool llama_token_is_control(const struct llama_model * model, llama_token token); | |
// Special tokens | |
LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence | |
LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence | |
LLAMA_API llama_token llama_token_eot(const struct llama_model * model); // end-of-turn | |
LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification | |
LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator | |
LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line | |
LLAMA_API llama_token llama_token_pad(const struct llama_model * model); // padding | |
LLAMA_API bool llama_add_bos_token(const struct llama_model * model); | |
LLAMA_API bool llama_add_eos_token(const struct llama_model * model); | |
// infill tokens | |
DEPRECATED(LLAMA_API llama_token llama_token_prefix(const struct llama_model * model), "use llama_token_fim_pre instead"); | |
DEPRECATED(LLAMA_API llama_token llama_token_middle(const struct llama_model * model), "use llama_token_fim_mid instead"); | |
DEPRECATED(LLAMA_API llama_token llama_token_suffix(const struct llama_model * model), "use llama_token_fim_suf instead"); | |
LLAMA_API llama_token llama_token_fim_pre(const struct llama_model * model); | |
LLAMA_API llama_token llama_token_fim_suf(const struct llama_model * model); | |
LLAMA_API llama_token llama_token_fim_mid(const struct llama_model * model); | |
LLAMA_API llama_token llama_token_fim_pad(const struct llama_model * model); | |
LLAMA_API llama_token llama_token_fim_rep(const struct llama_model * model); | |
LLAMA_API llama_token llama_token_fim_sep(const struct llama_model * model); | |
// | |
// Tokenization | |
// | |
// The API is thread-safe. | |
// | |
/// @details Convert the provided text into tokens. | |
/// @param tokens The tokens pointer must be large enough to hold the resulting tokens. | |
/// @return Returns the number of tokens on success, no more than n_tokens_max | |
/// @return Returns a negative number on failure - the number of tokens that would have been returned | |
/// @param add_special Allow to add BOS and EOS tokens if model is configured to do so. | |
/// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated | |
/// as plaintext. Does not insert a leading space. | |
LLAMA_API int32_t llama_tokenize( | |
const struct llama_model * model, | |
const char * text, | |
int32_t text_len, | |
llama_token * tokens, | |
int32_t n_tokens_max, | |
bool add_special, | |
bool parse_special); | |
// Token Id -> Piece. | |
// Uses the vocabulary in the provided context. | |
// Does not write null terminator to the buffer. | |
// User can skip up to 'lstrip' leading spaces before copying (useful when encoding/decoding multiple tokens with 'add_space_prefix') | |
// @param special If true, special tokens are rendered in the output. | |
LLAMA_API int32_t llama_token_to_piece( | |
const struct llama_model * model, | |
llama_token token, | |
char * buf, | |
int32_t length, | |
int32_t lstrip, | |
bool special); | |
/// @details Convert the provided tokens into text (inverse of llama_tokenize()). | |
/// @param text The char pointer must be large enough to hold the resulting text. | |
/// @return Returns the number of chars/bytes on success, no more than text_len_max. | |
/// @return Returns a negative number on failure - the number of chars/bytes that would have been returned. | |
/// @param remove_special Allow to remove BOS and EOS tokens if model is configured to do so. | |
/// @param unparse_special If true, special tokens are rendered in the output. | |
LLAMA_API int32_t llama_detokenize( | |
const struct llama_model * model, | |
const llama_token * tokens, | |
int32_t n_tokens, | |
char * text, | |
int32_t text_len_max, | |
bool remove_special, | |
bool unparse_special); | |
// | |
// Chat templates | |
// | |
/// Apply chat template. Inspired by hf apply_chat_template() on python. | |
/// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model" | |
/// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template | |
/// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead. | |
/// @param chat Pointer to a list of multiple llama_chat_message | |
/// @param n_msg Number of llama_chat_message in this chat | |
/// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message. | |
/// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages) | |
/// @param length The size of the allocated buffer | |
/// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template. | |
LLAMA_API int32_t llama_chat_apply_template( | |
const struct llama_model * model, | |
const char * tmpl, | |
const struct llama_chat_message * chat, | |
size_t n_msg, | |
bool add_ass, | |
char * buf, | |
int32_t length); | |
// | |
// Sampling API | |
// | |
// Sample usage: | |
// | |
// // prepare the sampling chain at the start | |
// auto sparams = llama_sampler_chain_default_params(); | |
// | |
// llama_sampler * smpl = llama_sampler_chain_init(sparams); | |
// | |
// llama_sampler_chain_add(smpl, llama_sampler_init_top_k(50)); | |
// llama_sampler_chain_add(smpl, llama_sampler_init_top_p(0.9, 1)); | |
// llama_sampler_chain_add(smpl, llama_sampler_init_temp (0.8)); | |
// | |
// // typically, the chain should end with a sampler such as "greedy", "dist" or "mirostat" | |
// // this sampler will be responsible to select the actual token | |
// llama_sampler_chain_add(smpl, llama_sampler_init_dist(seed)); | |
// | |
// ... | |
// | |
// // decoding loop: | |
// while (...) { | |
// ... | |
// | |
// llama_decode(ctx, batch); | |
// | |
// // sample from the logits of the last token in the batch | |
// const llama_token id = llama_sampler_sample(smpl, ctx, -1); | |
// | |
// // accepting the token updates the internal state of certain samplers (e.g. grammar, repetition, etc.) | |
// llama_sampler_accept(smpl, id); | |
// ... | |
// } | |
// | |
// llama_sampler_free(smpl); | |
// | |
// TODO: In the future, llama_sampler will be utilized to offload the sampling to the backends (e.g. GPU). | |
// TODO: in the future, the entire sampling API that uses llama_model should start using llama_vocab | |
// | |
typedef void * llama_sampler_context_t; | |
// user code can implement the interface below in order to create custom llama_sampler | |
struct llama_sampler_i { | |
const char * (*name) (const struct llama_sampler * smpl); // can be NULL | |
void (*accept)( struct llama_sampler * smpl, llama_token token); // can be NULL | |
void (*apply) ( struct llama_sampler * smpl, llama_token_data_array * cur_p); // required | |
void (*reset) ( struct llama_sampler * smpl); // can be NULL | |
struct llama_sampler * (*clone) (const struct llama_sampler * smpl); // can be NULL if ctx is NULL | |
void (*free) ( struct llama_sampler * smpl); // can be NULL if ctx is NULL | |
// TODO: API for internal libllama usage for appending the sampling to an existing ggml_cgraph | |
//void (*apply_ggml) (struct llama_sampler * smpl, ...); | |
}; | |
struct llama_sampler { | |
struct llama_sampler_i * iface; | |
llama_sampler_context_t ctx; | |
}; | |
// mirror of llama_sampler_i: | |
LLAMA_API const char * llama_sampler_name (const struct llama_sampler * smpl); | |
LLAMA_API void llama_sampler_accept( struct llama_sampler * smpl, llama_token token); | |
LLAMA_API void llama_sampler_apply ( struct llama_sampler * smpl, llama_token_data_array * cur_p); | |
LLAMA_API void llama_sampler_reset ( struct llama_sampler * smpl); | |
LLAMA_API struct llama_sampler * llama_sampler_clone (const struct llama_sampler * smpl); | |
// important: do not free if the sampler has been added to a llama_sampler_chain (via llama_sampler_chain_add) | |
LLAMA_API void llama_sampler_free ( struct llama_sampler * smpl); | |
// llama_sampler_chain | |
// a type of llama_sampler that can chain multiple samplers one after another | |
LLAMA_API struct llama_sampler * llama_sampler_chain_init(struct llama_sampler_chain_params params); | |
// important: takes ownership of the sampler object and will free it when llama_sampler_free is called | |
LLAMA_API void llama_sampler_chain_add( struct llama_sampler * chain, struct llama_sampler * smpl); | |
LLAMA_API struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i); | |
LLAMA_API int llama_sampler_chain_n (const struct llama_sampler * chain); | |
// after removing a sampler, the chain will no longer own it, and it will not be freed when the chain is freed | |
LLAMA_API struct llama_sampler * llama_sampler_chain_remove( struct llama_sampler * chain, int32_t i); | |
// available samplers: | |
LLAMA_API struct llama_sampler * llama_sampler_init_greedy(void); | |
LLAMA_API struct llama_sampler * llama_sampler_init_dist (uint32_t seed); | |
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits. | |
/// NOTE: Avoid using on the full vocabulary as the sorting can become slow. For example, apply top-k or top-p sampling first. | |
DEPRECATED(LLAMA_API struct llama_sampler * llama_sampler_init_softmax (void), | |
"will be removed in the future (see https://github.com/ggerganov/llama.cpp/pull/9896#discussion_r1800920915)"); | |
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751 | |
LLAMA_API struct llama_sampler * llama_sampler_init_top_k (int32_t k); | |
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751 | |
LLAMA_API struct llama_sampler * llama_sampler_init_top_p (float p, size_t min_keep); | |
/// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841 | |
LLAMA_API struct llama_sampler * llama_sampler_init_min_p (float p, size_t min_keep); | |
/// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666. | |
LLAMA_API struct llama_sampler * llama_sampler_init_typical (float p, size_t min_keep); | |
/// #details Updates the logits l_i` = l_i/t. When t <= 0.0f, the maximum logit is kept at it's original value, the rest are set to -inf | |
LLAMA_API struct llama_sampler * llama_sampler_init_temp (float t); | |
/// @details Dynamic temperature implementation (a.k.a. entropy) described in the paper https://arxiv.org/abs/2309.02772. | |
LLAMA_API struct llama_sampler * llama_sampler_init_temp_ext (float t, float delta, float exponent); | |
/// @details XTC sampler as described in https://github.com/oobabooga/text-generation-webui/pull/6335 | |
LLAMA_API struct llama_sampler * llama_sampler_init_xtc (float p, float t, size_t min_keep, uint32_t seed); | |
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words. | |
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text. | |
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text. | |
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates. | |
/// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm. | |
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal. | |
LLAMA_API struct llama_sampler * llama_sampler_init_mirostat( | |
int32_t n_vocab, | |
uint32_t seed, | |
float tau, | |
float eta, | |
int32_t m); | |
/// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words. | |
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text. | |
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text. | |
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates. | |
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal. | |
LLAMA_API struct llama_sampler * llama_sampler_init_mirostat_v2( | |
uint32_t seed, | |
float tau, | |
float eta); | |
LLAMA_API struct llama_sampler * llama_sampler_init_grammar( | |
const struct llama_model * model, | |
const char * grammar_str, | |
const char * grammar_root); | |
LLAMA_API struct llama_sampler * llama_sampler_init_penalties( | |
int32_t n_vocab, // llama_n_vocab() | |
llama_token special_eos_id, // llama_token_eos() | |
llama_token linefeed_id, // llama_token_nl() | |
int32_t penalty_last_n, // last n tokens to penalize (0 = disable penalty, -1 = context size) | |
float penalty_repeat, // 1.0 = disabled | |
float penalty_freq, // 0.0 = disabled | |
float penalty_present, // 0.0 = disabled | |
bool penalize_nl, // consider newlines as a repeatable token | |
bool ignore_eos); // ignore the end-of-sequence token | |
/// @details DRY sampler, designed by p-e-w, as described in: https://github.com/oobabooga/text-generation-webui/pull/5677, porting Koboldcpp implementation authored by pi6am: https://github.com/LostRuins/koboldcpp/pull/982 | |
LLAMA_API struct llama_sampler * llama_sampler_init_dry( | |
const struct llama_model * model, | |
float dry_multiplier, | |
float dry_base, | |
int32_t dry_allowed_length, | |
int32_t dry_penalty_last_n, | |
const char ** seq_breakers, | |
size_t num_breakers); | |
LLAMA_API struct llama_sampler * llama_sampler_init_logit_bias( | |
int32_t n_vocab, | |
int32_t n_logit_bias, | |
const llama_logit_bias * logit_bias); | |
// this sampler is meant to be used for fill-in-the-middle infilling | |
// it's supposed to be used after top_k + top_p sampling | |
// | |
// 1. if the sum of the EOG probs times the number of candidates is higher than the sum of the other probs -> pick EOG | |
// 2. combine probs of tokens that have the same prefix | |
// | |
// example: | |
// | |
// - before: | |
// "hel": 0.5 | |
// "hell": 0.2 | |
// "hello": 0.1 | |
// "dummy": 0.1 | |
// | |
// - after: | |
// "hel": 0.8 | |
// "dummy": 0.1 | |
// | |
// 3. discard non-EOG tokens with low prob | |
// 4. if no tokens are left -> pick EOT | |
// | |
LLAMA_API struct llama_sampler * llama_sampler_init_infill(const struct llama_model * model); | |
// Returns the seed used by the sampler if applicable, LLAMA_DEFAULT_SEED otherwise | |
LLAMA_API uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl); | |
/// @details Sample and accept a token from the idx-th output of the last evaluation | |
// | |
// Shorthand for: | |
// const auto * logits = llama_get_logits_ith(ctx, idx); | |
// llama_token_data_array cur_p = { ... init from logits ... }; | |
// llama_sampler_apply(smpl, &cur_p); | |
// auto token = cur_p.data[cur_p.selected].id; | |
// llama_sampler_accept(smpl, token); | |
// return token; | |
// Returns the sampled token | |
LLAMA_API llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx); | |
// TODO: extend in the future | |
//LLAMA_API void llama_decode_with_sampler(struct llama_context * ctx, struct llama_sampler * smpl, struct llama_batch batch, ...); | |
// | |
// Model split | |
// | |
/// @details Build a split GGUF final path for this chunk. | |
/// llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf" | |
// Returns the split_path length. | |
LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count); | |
/// @details Extract the path prefix from the split_path if and only if the split_no and split_count match. | |
/// llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0" | |
// Returns the split_prefix length. | |
LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count); | |
// Print system information | |
LLAMA_API const char * llama_print_system_info(void); | |
// Set callback for all future logging events. | |
// If this is not called, or NULL is supplied, everything is output on stderr. | |
LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data); | |
// | |
// Performance utils | |
// | |
// NOTE: Used by llama.cpp examples, avoid using in third-party apps. Instead, do your own performance measurements. | |
// | |
struct llama_perf_context_data { | |
double t_start_ms; | |
double t_load_ms; | |
double t_p_eval_ms; | |
double t_eval_ms; | |
int32_t n_p_eval; | |
int32_t n_eval; | |
}; | |
struct llama_perf_sampler_data { | |
double t_sample_ms; | |
int32_t n_sample; | |
}; | |
LLAMA_API struct llama_perf_context_data llama_perf_context (const struct llama_context * ctx); | |
LLAMA_API void llama_perf_context_print(const struct llama_context * ctx); | |
LLAMA_API void llama_perf_context_reset( struct llama_context * ctx); | |
// NOTE: the following work only with samplers constructed via llama_sampler_chain_init | |
LLAMA_API struct llama_perf_sampler_data llama_perf_sampler (const struct llama_sampler * chain); | |
LLAMA_API void llama_perf_sampler_print(const struct llama_sampler * chain); | |
LLAMA_API void llama_perf_sampler_reset( struct llama_sampler * chain); | |
LLAMA_API void llama_perf_dump_yaml(FILE * stream, const struct llama_context * ctx); | |
} | |