privatellm / gguf-py /scripts /gguf_dump.py
lhhj
first
57e3690
raw
history blame
21.9 kB
#!/usr/bin/env python3
from __future__ import annotations
import logging
import argparse
import os
import re
import sys
from pathlib import Path
from typing import Any
import numpy as np
# Necessary to load the local gguf package
if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists():
sys.path.insert(0, str(Path(__file__).parent.parent))
from gguf import GGUFReader, GGUFValueType, ReaderTensor # noqa: E402
logger = logging.getLogger("gguf-dump")
def get_file_host_endian(reader: GGUFReader) -> tuple[str, str]:
host_endian = 'LITTLE' if np.uint32(1) == np.uint32(1).newbyteorder("<") else 'BIG'
if reader.byte_order == 'S':
file_endian = 'BIG' if host_endian == 'LITTLE' else 'LITTLE'
else:
file_endian = host_endian
return (host_endian, file_endian)
# For more information about what field.parts and field.data represent,
# please see the comments in the modify_gguf.py example.
def dump_metadata(reader: GGUFReader, args: argparse.Namespace) -> None:
host_endian, file_endian = get_file_host_endian(reader)
print(f'* File is {file_endian} endian, script is running on a {host_endian} endian host.') # noqa: NP100
print(f'* Dumping {len(reader.fields)} key/value pair(s)') # noqa: NP100
for n, field in enumerate(reader.fields.values(), 1):
if not field.types:
pretty_type = 'N/A'
elif field.types[0] == GGUFValueType.ARRAY:
nest_count = len(field.types) - 1
pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count
else:
pretty_type = str(field.types[-1].name)
log_message = f' {n:5}: {pretty_type:10} | {len(field.data):8} | {field.name}'
if len(field.types) == 1:
curr_type = field.types[0]
if curr_type == GGUFValueType.STRING:
log_message += ' = {0}'.format(repr(str(bytes(field.parts[-1]), encoding='utf-8')[:60]))
elif field.types[0] in reader.gguf_scalar_to_np:
log_message += ' = {0}'.format(field.parts[-1][0])
print(log_message) # noqa: NP100
if args.no_tensors:
return
print(f'* Dumping {len(reader.tensors)} tensor(s)') # noqa: NP100
for n, tensor in enumerate(reader.tensors, 1):
prettydims = ', '.join('{0:5}'.format(d) for d in list(tensor.shape) + [1] * (4 - len(tensor.shape)))
print(f' {n:5}: {tensor.n_elements:10} | {prettydims} | {tensor.tensor_type.name:7} | {tensor.name}') # noqa: NP100
def dump_metadata_json(reader: GGUFReader, args: argparse.Namespace) -> None:
import json
host_endian, file_endian = get_file_host_endian(reader)
metadata: dict[str, Any] = {}
tensors: dict[str, Any] = {}
result = {
"filename": args.model,
"endian": file_endian,
"metadata": metadata,
"tensors": tensors,
}
for idx, field in enumerate(reader.fields.values()):
curr: dict[str, Any] = {
"index": idx,
"type": field.types[0].name if field.types else 'UNKNOWN',
"offset": field.offset,
}
metadata[field.name] = curr
if field.types[:1] == [GGUFValueType.ARRAY]:
curr["array_types"] = [t.name for t in field.types][1:]
if not args.json_array:
continue
itype = field.types[-1]
if itype == GGUFValueType.STRING:
curr["value"] = [str(bytes(field.parts[idx]), encoding="utf-8") for idx in field.data]
else:
curr["value"] = [pv for idx in field.data for pv in field.parts[idx].tolist()]
elif field.types[0] == GGUFValueType.STRING:
curr["value"] = str(bytes(field.parts[-1]), encoding="utf-8")
else:
curr["value"] = field.parts[-1].tolist()[0]
if not args.no_tensors:
for idx, tensor in enumerate(reader.tensors):
tensors[tensor.name] = {
"index": idx,
"shape": tensor.shape.tolist(),
"type": tensor.tensor_type.name,
"offset": tensor.field.offset,
}
json.dump(result, sys.stdout)
def markdown_table_with_alignment_support(header_map: list[dict[str, str]], data: list[dict[str, Any]]):
# JSON to Markdown table formatting: https://stackoverflow.com/a/72983854/2850957
# Alignment Utility Function
def strAlign(padding: int, alignMode: str | None, strVal: str):
if alignMode == 'center':
return strVal.center(padding)
elif alignMode == 'right':
return strVal.rjust(padding - 1) + ' '
elif alignMode == 'left':
return ' ' + strVal.ljust(padding - 1)
else: # default left
return ' ' + strVal.ljust(padding - 1)
def dashAlign(padding: int, alignMode: str | None):
if alignMode == 'center':
return ':' + '-' * (padding - 2) + ':'
elif alignMode == 'right':
return '-' * (padding - 1) + ':'
elif alignMode == 'left':
return ':' + '-' * (padding - 1)
else: # default left
return '-' * (padding)
# Calculate Padding For Each Column Based On Header and Data Length
rowsPadding = {}
for index, columnEntry in enumerate(header_map):
padCount = max([len(str(v)) for d in data for k, v in d.items() if k == columnEntry['key_name']], default=0) + 2
headerPadCount = len(columnEntry['header_name']) + 2
rowsPadding[index] = headerPadCount if padCount <= headerPadCount else padCount
# Render Markdown Header
rows = []
rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(columnEntry['header_name'])) for index, columnEntry in enumerate(header_map)))
rows.append('|'.join(dashAlign(rowsPadding[index], columnEntry.get('align')) for index, columnEntry in enumerate(header_map)))
# Render Tabular Data
for item in data:
rows.append('|'.join(strAlign(rowsPadding[index], columnEntry.get('align'), str(item[columnEntry['key_name']])) for index, columnEntry in enumerate(header_map)))
# Convert Tabular String Rows Into String
tableString = ""
for row in rows:
tableString += f'|{row}|\n'
return tableString
def element_count_rounded_notation(count: int) -> str:
if count > 1e15 :
# Quadrillion
scaled_amount = count * 1e-15
scale_suffix = "Q"
elif count > 1e12 :
# Trillions
scaled_amount = count * 1e-12
scale_suffix = "T"
elif count > 1e9 :
# Billions
scaled_amount = count * 1e-9
scale_suffix = "B"
elif count > 1e6 :
# Millions
scaled_amount = count * 1e-6
scale_suffix = "M"
elif count > 1e3 :
# Thousands
scaled_amount = count * 1e-3
scale_suffix = "K"
else:
# Under Thousands
scaled_amount = count
scale_suffix = ""
return f"{'~' if count > 1e3 else ''}{round(scaled_amount)}{scale_suffix}"
def translate_tensor_name(name):
words = name.split(".")
# Source: https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#standardized-tensor-names
abbreviation_dictionary = {
'token_embd': 'Token embedding',
'pos_embd': 'Position embedding',
'output_norm': 'Output normalization',
'output': 'Output',
'attn_norm': 'Attention normalization',
'attn_norm_2': 'Attention normalization',
'attn_qkv': 'Attention query-key-value',
'attn_q': 'Attention query',
'attn_k': 'Attention key',
'attn_v': 'Attention value',
'attn_output': 'Attention output',
'ffn_norm': 'Feed-forward network normalization',
'ffn_up': 'Feed-forward network "up"',
'ffn_gate': 'Feed-forward network "gate"',
'ffn_down': 'Feed-forward network "down"',
'ffn_gate_inp': 'Expert-routing layer for the Feed-forward network in Mixture of Expert models',
'ffn_gate_exp': 'Feed-forward network "gate" layer per expert in Mixture of Expert models',
'ffn_down_exp': 'Feed-forward network "down" layer per expert in Mixture of Expert models',
'ffn_up_exp': 'Feed-forward network "up" layer per expert in Mixture of Expert models',
'ssm_in': 'State space model input projections',
'ssm_conv1d': 'State space model rolling/shift',
'ssm_x': 'State space model selective parametrization',
'ssm_a': 'State space model state compression',
'ssm_d': 'State space model skip connection',
'ssm_dt': 'State space model time step',
'ssm_out': 'State space model output projection',
'blk': 'Block',
'enc': 'Encoder',
'dec': 'Decoder',
}
expanded_words = []
for word in words:
word_norm = word.strip().lower()
if word_norm in abbreviation_dictionary:
expanded_words.append(abbreviation_dictionary[word_norm].title())
else:
expanded_words.append(word.title())
return ' '.join(expanded_words)
def dump_markdown_metadata(reader: GGUFReader, args: argparse.Namespace) -> None:
host_endian, file_endian = get_file_host_endian(reader)
markdown_content = ""
markdown_content += f'# {args.model} - GGUF Internal File Dump\n\n'
markdown_content += f'- Endian: {file_endian} endian\n'
markdown_content += '\n'
markdown_content += '## Key Value Metadata Store\n\n'
markdown_content += f'There are {len(reader.fields)} key-value pairs in this file\n'
markdown_content += '\n'
kv_dump_table: list[dict[str, str | int]] = []
for n, field in enumerate(reader.fields.values(), 1):
if not field.types:
pretty_type = 'N/A'
elif field.types[0] == GGUFValueType.ARRAY:
nest_count = len(field.types) - 1
pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count
else:
pretty_type = str(field.types[-1].name)
def escape_markdown_inline_code(value_string):
# Find the longest contiguous sequence of backticks in the string then
# wrap string with appropriate number of backticks required to escape it
max_backticks = max((len(match.group(0)) for match in re.finditer(r'`+', value_string)), default=0)
inline_code_marker = '`' * (max_backticks + 1)
# If the string starts or ends with a backtick, add a space at the beginning and end
if value_string.startswith('`') or value_string.endswith('`'):
value_string = f" {value_string} "
return f"{inline_code_marker}{value_string}{inline_code_marker}"
total_elements = len(field.data)
value = ""
if len(field.types) == 1:
curr_type = field.types[0]
if curr_type == GGUFValueType.STRING:
truncate_length = 60
value_string = str(bytes(field.parts[-1]), encoding='utf-8')
if len(value_string) > truncate_length:
head = escape_markdown_inline_code(value_string[:truncate_length // 2])
tail = escape_markdown_inline_code(value_string[-truncate_length // 2:])
value = "{head}...{tail}".format(head=head, tail=tail)
else:
value = escape_markdown_inline_code(value_string)
elif curr_type in reader.gguf_scalar_to_np:
value = str(field.parts[-1][0])
else:
if field.types[0] == GGUFValueType.ARRAY:
curr_type = field.types[1]
array_elements = []
if curr_type == GGUFValueType.STRING:
render_element = min(5, total_elements)
for element_pos in range(render_element):
truncate_length = 30
value_string = str(bytes(field.parts[-1 - (total_elements - element_pos - 1) * 2]), encoding='utf-8')
if len(value_string) > truncate_length:
head = escape_markdown_inline_code(value_string[:truncate_length // 2])
tail = escape_markdown_inline_code(value_string[-truncate_length // 2:])
value = "{head}...{tail}".format(head=head, tail=tail)
else:
value = escape_markdown_inline_code(value_string)
array_elements.append(value)
elif curr_type in reader.gguf_scalar_to_np:
render_element = min(7, total_elements)
for element_pos in range(render_element):
array_elements.append(str(field.parts[-1 - (total_elements - element_pos - 1)][0]))
value = f'[ {", ".join(array_elements).strip()}{", ..." if total_elements > len(array_elements) else ""} ]'
kv_dump_table.append({"n":n, "pretty_type":pretty_type, "total_elements":total_elements, "field_name":field.name, "value":value})
kv_dump_table_header_map = [
{'key_name':'n', 'header_name':'POS', 'align':'right'},
{'key_name':'pretty_type', 'header_name':'TYPE', 'align':'left'},
{'key_name':'total_elements', 'header_name':'Count', 'align':'right'},
{'key_name':'field_name', 'header_name':'Key', 'align':'left'},
{'key_name':'value', 'header_name':'Value', 'align':'left'},
]
markdown_content += markdown_table_with_alignment_support(kv_dump_table_header_map, kv_dump_table)
markdown_content += "\n"
if not args.no_tensors:
# Group tensors by their prefix and maintain order
tensor_prefix_order: list[str] = []
tensor_name_to_key: dict[str, int] = {}
tensor_groups: dict[str, list[ReaderTensor]] = {}
total_elements = sum(tensor.n_elements for tensor in reader.tensors)
# Parsing Tensors Record
for key, tensor in enumerate(reader.tensors):
tensor_components = tensor.name.split('.')
# Classify Tensor Group
tensor_group_name = "base"
if tensor_components[0] == 'blk':
tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}"
elif tensor_components[0] in ['enc', 'dec'] and tensor_components[1] == 'blk':
tensor_group_name = f"{tensor_components[0]}.{tensor_components[1]}.{tensor_components[2]}"
elif tensor_components[0] in ['enc', 'dec']:
tensor_group_name = f"{tensor_components[0]}"
# Check if new Tensor Group
if tensor_group_name not in tensor_groups:
tensor_groups[tensor_group_name] = []
tensor_prefix_order.append(tensor_group_name)
# Record Tensor and Tensor Position
tensor_groups[tensor_group_name].append(tensor)
tensor_name_to_key[tensor.name] = key
# Tensors Mapping Dump
markdown_content += f'## Tensors Overview {element_count_rounded_notation(total_elements)} Elements\n\n'
markdown_content += f'Total number of elements in all tensors: {total_elements} Elements\n'
markdown_content += '\n'
for group in tensor_prefix_order:
tensors = tensor_groups[group]
group_elements = sum(tensor.n_elements for tensor in tensors)
markdown_content += f"- [{translate_tensor_name(group)} Tensor Group - {element_count_rounded_notation(group_elements)} Elements](#{group.replace('.', '_')})\n"
markdown_content += "\n"
markdown_content += "### Tensor Data Offset\n"
markdown_content += '\n'
markdown_content += 'This table contains the offset and data segment relative to start of file\n'
markdown_content += '\n'
tensor_mapping_table: list[dict[str, str | int]] = []
for key, tensor in enumerate(reader.tensors):
data_offset_pretty = '{0:#16x}'.format(tensor.data_offset)
data_size_pretty = '{0:#16x}'.format(tensor.n_bytes)
tensor_mapping_table.append({"t_id":key, "layer_name":tensor.name, "data_offset":data_offset_pretty, "data_size":data_size_pretty})
tensors_mapping_table_header_map = [
{'key_name':'t_id', 'header_name':'T_ID', 'align':'right'},
{'key_name':'layer_name', 'header_name':'Tensor Layer Name', 'align':'left'},
{'key_name':'data_offset', 'header_name':'Data Offset (B)', 'align':'right'},
{'key_name':'data_size', 'header_name':'Data Size (B)', 'align':'right'},
]
markdown_content += markdown_table_with_alignment_support(tensors_mapping_table_header_map, tensor_mapping_table)
markdown_content += "\n"
for group in tensor_prefix_order:
tensors = tensor_groups[group]
group_elements = sum(tensor.n_elements for tensor in tensors)
group_percentage = group_elements / total_elements * 100
markdown_content += f"### <a name=\"{group.replace('.', '_')}\">{translate_tensor_name(group)} Tensor Group : {element_count_rounded_notation(group_elements)} Elements</a>\n\n"
# Precalculate column sizing for visual consistency
prettify_element_est_count_size: int = 1
prettify_element_count_size: int = 1
prettify_dimension_max_widths: dict[int, int] = {}
for tensor in tensors:
prettify_element_est_count_size = max(prettify_element_est_count_size, len(str(element_count_rounded_notation(tensor.n_elements))))
prettify_element_count_size = max(prettify_element_count_size, len(str(tensor.n_elements)))
for i, dimension_size in enumerate(list(tensor.shape) + [1] * (4 - len(tensor.shape))):
prettify_dimension_max_widths[i] = max(prettify_dimension_max_widths.get(i,1), len(str(dimension_size)))
# Generate Tensor Layer Table Content
tensor_dump_table: list[dict[str, str | int]] = []
for tensor in tensors:
human_friendly_name = translate_tensor_name(tensor.name.replace(".weight", ".(W)").replace(".bias", ".(B)"))
pretty_dimension = ' x '.join(f'{str(d):>{prettify_dimension_max_widths[i]}}' for i, d in enumerate(list(tensor.shape) + [1] * (4 - len(tensor.shape))))
element_count_est = f"({element_count_rounded_notation(tensor.n_elements):>{prettify_element_est_count_size}})"
element_count_string = f"{element_count_est} {tensor.n_elements:>{prettify_element_count_size}}"
type_name_string = f"{tensor.tensor_type.name}"
tensor_dump_table.append({"t_id":tensor_name_to_key[tensor.name], "layer_name":tensor.name, "human_layer_name":human_friendly_name, "element_count":element_count_string, "pretty_dimension":pretty_dimension, "tensor_type":type_name_string})
tensor_dump_table_header_map = [
{'key_name':'t_id', 'header_name':'T_ID', 'align':'right'},
{'key_name':'layer_name', 'header_name':'Tensor Layer Name', 'align':'left'},
{'key_name':'human_layer_name', 'header_name':'Human Friendly Tensor Layer Name', 'align':'left'},
{'key_name':'element_count', 'header_name':'Elements', 'align':'left'},
{'key_name':'pretty_dimension', 'header_name':'Shape', 'align':'left'},
{'key_name':'tensor_type', 'header_name':'Type', 'align':'left'},
]
markdown_content += markdown_table_with_alignment_support(tensor_dump_table_header_map, tensor_dump_table)
markdown_content += "\n"
markdown_content += f"- Total elements in {group}: ({element_count_rounded_notation(group_elements):>4}) {group_elements}\n"
markdown_content += f"- Percentage of total elements: {group_percentage:.2f}%\n"
markdown_content += "\n\n"
print(markdown_content) # noqa: NP100
def main() -> None:
parser = argparse.ArgumentParser(description="Dump GGUF file metadata")
parser.add_argument("model", type=str, help="GGUF format model filename")
parser.add_argument("--no-tensors", action="store_true", help="Don't dump tensor metadata")
parser.add_argument("--json", action="store_true", help="Produce JSON output")
parser.add_argument("--json-array", action="store_true", help="Include full array values in JSON output (long)")
parser.add_argument("--data-offset", action="store_true", help="Start of data offset")
parser.add_argument("--data-alignment", action="store_true", help="Data alignment applied globally to data field")
parser.add_argument("--markdown", action="store_true", help="Produce markdown output")
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"])
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
if not args.json and not args.markdown and not args.data_offset and not args.data_alignment:
logger.info(f'* Loading: {args.model}')
reader = GGUFReader(args.model, 'r')
if args.json:
dump_metadata_json(reader, args)
elif args.markdown:
dump_markdown_metadata(reader, args)
elif args.data_offset:
print(reader.data_offset) # noqa: NP100
elif args.data_alignment:
print(reader.alignment) # noqa: NP100
else:
dump_metadata(reader, args)
if __name__ == '__main__':
main()