Spaces:
Daniton
/
Runtime error

Daniton suko commited on
Commit
702de91
·
0 Parent(s):

Duplicate from suko/nsfw

Browse files

Co-authored-by: SuKo Kuo <suko@users.noreply.huggingface.co>

Files changed (7) hide show
  1. .gitattributes +34 -0
  2. README.md +14 -0
  3. app.py +105 -0
  4. labels.txt +2 -0
  5. model.onnx +3 -0
  6. requirements.txt +4 -0
  7. signature.json +1 -0
.gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Nsfw Space
3
+ emoji: 💩
4
+ colorFrom: green
5
+ colorTo: green
6
+ sdk: gradio
7
+ sdk_version: 3.21.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: apache-2.0
11
+ duplicated_from: suko/nsfw
12
+ ---
13
+
14
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import json
4
+ import os
5
+ from PIL import Image
6
+ import onnxruntime as rt
7
+ class ONNXModel:
8
+ def __init__(self, dir_path) -> None:
9
+ """Method to get name of model file. Assumes model is in the parent directory for script."""
10
+ model_dir = os.path.dirname(dir_path)
11
+ with open(os.path.join(model_dir, "signature.json"), "r") as f:
12
+ self.signature = json.load(f)
13
+ self.model_file = os.path.join(model_dir, self.signature.get("filename"))
14
+ if not os.path.isfile(self.model_file):
15
+ raise FileNotFoundError(f"Model file does not exist")
16
+ # get the signature for model inputs and outputs
17
+ self.signature_inputs = self.signature.get("inputs")
18
+ self.signature_outputs = self.signature.get("outputs")
19
+ self.session = None
20
+ if "Image" not in self.signature_inputs:
21
+ raise ValueError("ONNX model doesn't have 'Image' input! Check signature.json, and please report issue to Lobe.")
22
+ # Look for the version in signature file.
23
+ # If it's not found or the doesn't match expected, print a message
24
+ version = self.signature.get("export_model_version")
25
+ if version is None or version != EXPORT_MODEL_VERSION:
26
+ print(
27
+ f"There has been a change to the model format. Please use a model with a signature 'export_model_version' that matches {EXPORT_MODEL_VERSION}."
28
+ )
29
+
30
+ def load(self) -> None:
31
+ """Load the model from path to model file"""
32
+ # Load ONNX model as session.
33
+ self.session = rt.InferenceSession(path_or_bytes=self.model_file)
34
+
35
+ def predict(self, image: Image.Image) -> dict:
36
+ """
37
+ Predict with the ONNX session!
38
+ """
39
+ # process image to be compatible with the model
40
+ img = self.process_image(image, self.signature_inputs.get("Image").get("shape"))
41
+ # run the model!
42
+ fetches = [(key, value.get("name")) for key, value in self.signature_outputs.items()]
43
+ # make the image a batch of 1
44
+ feed = {self.signature_inputs.get("Image").get("name"): [img]}
45
+ outputs = self.session.run(output_names=[name for (_, name) in fetches], input_feed=feed)
46
+ return self.process_output(fetches, outputs)
47
+
48
+ def process_image(self, image: Image.Image, input_shape: list) -> np.ndarray:
49
+ """
50
+ Given a PIL Image, center square crop and resize to fit the expected model input, and convert from [0,255] to [0,1] values.
51
+ """
52
+ width, height = image.size
53
+ # ensure image type is compatible with model and convert if not
54
+ if image.mode != "RGB":
55
+ image = image.convert("RGB")
56
+ # center crop image (you can substitute any other method to make a square image, such as just resizing or padding edges with 0)
57
+ if width != height:
58
+ square_size = min(width, height)
59
+ left = (width - square_size) / 2
60
+ top = (height - square_size) / 2
61
+ right = (width + square_size) / 2
62
+ bottom = (height + square_size) / 2
63
+ # Crop the center of the image
64
+ image = image.crop((left, top, right, bottom))
65
+ # now the image is square, resize it to be the right shape for the model input
66
+ input_width, input_height = input_shape[1:3]
67
+ if image.width != input_width or image.height != input_height:
68
+ image = image.resize((input_width, input_height))
69
+
70
+ # make 0-1 float instead of 0-255 int (that PIL Image loads by default)
71
+ image = np.asarray(image) / 255.0
72
+ # format input as model expects
73
+ return image.astype(np.float32)
74
+
75
+ def process_output(self, fetches: dict, outputs: dict) -> dict:
76
+ # un-batch since we ran an image with batch size of 1,
77
+ # convert to normal python types with tolist(), and convert any byte strings to normal strings with .decode()
78
+ out_keys = ["label", "confidence"]
79
+ results = {}
80
+ for i, (key, _) in enumerate(fetches):
81
+ val = outputs[i].tolist()[0]
82
+ if isinstance(val, bytes):
83
+ val = val.decode()
84
+ results[key] = val
85
+ confs = results["Confidences"]
86
+ labels = self.signature.get("classes").get("Label")
87
+ output = [dict(zip(out_keys, group)) for group in zip(labels, confs)]
88
+ sorted_output = {"predictions": sorted(output, key=lambda k: k["confidence"], reverse=True)}
89
+ return sorted_output
90
+ EXPORT_MODEL_VERSION=1
91
+ model = ONNXModel(dir_path="model.onnx")
92
+ model.load()
93
+
94
+ def predict(image):
95
+ image = Image.fromarray(np.uint8(image), 'RGB')
96
+ prediction = model.predict(image)
97
+ for output in prediction["predictions"]:
98
+ output["confidence"] = round(output["confidence"], 4)
99
+ return prediction
100
+
101
+ inputs = gr.inputs.Image(type="pil")
102
+ outputs = gr.outputs.JSON()
103
+
104
+ runtime=gr.Interface(title="Naked Detector",fn=predict, inputs=inputs, outputs=outputs)
105
+ runtime.launch()
labels.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ Naked
2
+ Safe
model.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c68efed73e1f740c1e0847d51a37960c06c880e84acc710bb4b65ce9db6857a1
3
+ size 99511952
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ gradio
2
+ numpy
3
+ pillow
4
+ onnxruntime
signature.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"doc_id": "6bfa3ac3-7170-4519-9a3d-777096d3423b", "doc_name": "NSFW", "doc_version": "c02bcb9a6cb4348ce6a87bed14754843", "format": "onnx", "version": 433, "inputs": {"Image": {"dtype": "float32", "shape": [null, 224, 224, 3], "name": "Image:0"}}, "outputs": {"Confidences": {"dtype": "float32", "shape": [null, 2], "name": "sequential/dense_2/Softmax:0"}}, "tags": [], "classes": {"Label": ["Naked", "Safe"]}, "filename": "model.onnx", "export_model_version": 1}