Spaces:
Sleeping
Sleeping
| import numpy as np | |
| import pandas as pd | |
| from sentence_transformers import SentenceTransformer | |
| class ModelFactory(): | |
| def __init__(self): | |
| pass | |
| def create_model(self, model_type): | |
| model = None | |
| if (model_type=='all-MiniLM-L6-v2'): | |
| model = MiniLM_L6_v2_Model() | |
| if (model_type=='sentence_similarity_spanish'): | |
| model = SentenceSimilaritySpanishModel() | |
| return model | |
| class BaseModel(): | |
| def __init__(self): | |
| pass | |
| def retrieve_embeddings(self, input_text): | |
| embeddings = self.model.encode(input_text, batch_size=32) | |
| embeddings *= 255 | |
| embeddings = embeddings.astype(np.uint8).tolist() | |
| return embeddings | |
| class MiniLM_L6_v2_Model(BaseModel): | |
| def __init__(self): | |
| self.model = SentenceTransformer('all-MiniLM-L6-v2') | |
| class SentenceSimilaritySpanishModel(BaseModel): | |
| def __init__(self): | |
| self.model = SentenceTransformer('hiiamsid/sentence_similarity_spanish_es') | |