Daniel Cerda Escobar commited on
Commit
d063ffc
·
1 Parent(s): 37c2466

Update front

Browse files
Files changed (2) hide show
  1. app.py +5 -2
  2. utils.py +0 -2
app.py CHANGED
@@ -1,10 +1,11 @@
1
  import streamlit as st
2
  import pandas as pd
 
 
3
  import sahi.utils.file
4
  from PIL import Image
5
  from sahi import AutoDetectionModel
6
  from utils import sahi_yolov8m_inference
7
- from streamlit_image_comparison import image_comparison
8
  from ultralyticsplus.hf_utils import download_from_hub
9
 
10
  IMAGE_TO_URL = {
@@ -204,6 +205,8 @@ with col2:
204
  col1,col2,col3 = st.columns([1,4,1])
205
  with col2:
206
  chart_data = st.session_state["output_4"]
207
- st.bar_chart(chart_data[['category','count']], x='category', y='count', use_container_width=True)
 
 
208
 
209
 
 
1
  import streamlit as st
2
  import pandas as pd
3
+ import seaborn as sns
4
+ import matplotlib.pyplot as plt
5
  import sahi.utils.file
6
  from PIL import Image
7
  from sahi import AutoDetectionModel
8
  from utils import sahi_yolov8m_inference
 
9
  from ultralyticsplus.hf_utils import download_from_hub
10
 
11
  IMAGE_TO_URL = {
 
205
  col1,col2,col3 = st.columns([1,4,1])
206
  with col2:
207
  chart_data = st.session_state["output_4"]
208
+ bar_plot = sns.barplot(x='count', y='category', data=chart_data)
209
+ st.pyplot(bar_plot.figure, use_container_width=True)
210
+ #st.bar_chart(chart_data[['category','count']], x='category', y='count', use_container_width=True)
211
 
212
 
utils.py CHANGED
@@ -52,7 +52,5 @@ def sahi_yolov8m_inference(
52
  category_counts.columns = ['category', 'count']
53
  # update the `count` column in the base DataFrame
54
  output_df['count'] = output_df['category'].map(category_counts.set_index('category')['count']).fillna(0).astype(int)
55
- # calculate percentages
56
- output_df['percentage'] = round((output_df['count'] / output_df['count'].sum()) * 100, 1)
57
 
58
  return output_visual,coco_df,output_df
 
52
  category_counts.columns = ['category', 'count']
53
  # update the `count` column in the base DataFrame
54
  output_df['count'] = output_df['category'].map(category_counts.set_index('category')['count']).fillna(0).astype(int)
 
 
55
 
56
  return output_visual,coco_df,output_df