|
import streamlit as st |
|
import pandas as pd |
|
import sahi.utils.file |
|
from PIL import Image |
|
from sahi import AutoDetectionModel |
|
from utils import sahi_yolov8m_inference |
|
from streamlit_image_comparison import image_comparison |
|
from ultralyticsplus.hf_utils import download_from_hub |
|
|
|
IMAGE_TO_URL = { |
|
'factory_pid.png' : 'https://d1afc1j4569hs1.cloudfront.net/factory-pid.png', |
|
'plant_pid.png' : 'https://d1afc1j4569hs1.cloudfront.net/plant-pid.png', |
|
'processing_pid.png' : 'https://d1afc1j4569hs1.cloudfront.net/processing-pid.png', |
|
'prediction_visual.png' : 'https://d1afc1j4569hs1.cloudfront.net/prediction_visual.png' |
|
} |
|
|
|
st.set_page_config( |
|
page_title="P&ID Object Detection", |
|
layout="wide", |
|
initial_sidebar_state="expanded" |
|
) |
|
|
|
st.title('P&ID Object Detection') |
|
st.subheader(' Identify valves and pumps with deep learning model ', divider='rainbow') |
|
st.caption('Developed by Deep Drawings Co.') |
|
|
|
@st.cache_resource(show_spinner=False) |
|
def get_model(postprocess_match_threshold): |
|
yolov8_model_path = download_from_hub('DanielCerda/pid_yolov8') |
|
detection_model = AutoDetectionModel.from_pretrained( |
|
model_type='yolov8', |
|
model_path=yolov8_model_path, |
|
confidence_threshold=postprocess_match_threshold, |
|
device="cpu", |
|
) |
|
return detection_model |
|
|
|
@st.cache_data(show_spinner=False) |
|
def download_comparison_images(): |
|
sahi.utils.file.download_from_url( |
|
'https://d1afc1j4569hs1.cloudfront.net/plant-pid.png', |
|
'plant_pid.png', |
|
) |
|
sahi.utils.file.download_from_url( |
|
'https://d1afc1j4569hs1.cloudfront.net/prediction_visual.png', |
|
'prediction_visual.png', |
|
) |
|
|
|
download_comparison_images() |
|
|
|
|
|
coco_df = pd.DataFrame({ |
|
'category' : ['centrifugal-pump','centrifugal-pump','gate-valve','gate-valve','gate-valve','gate-valve','gate-valve','gate-valve','gate-valve','gate-valve','gate-valve'], |
|
'score' : [0.88, 0.85, 0.87, 0.87, 0.86, 0.86, 0.85, 0.84, 0.81, 0.81, 0.76] |
|
}) |
|
output_df = pd.DataFrame({ |
|
'category':['ball-valve', 'butterfly-valve', 'centrifugal-pump', 'check-valve', 'gate-valve'], |
|
'count':[0, 0, 2, 0, 9], |
|
'percentage':[0, 0, 18.2, 0, 81.8] |
|
}) |
|
|
|
|
|
if "output_1" not in st.session_state: |
|
img_1 = Image.open('plant_pid.png') |
|
st.session_state["output_1"] = img_1.resize((4960,3508)) |
|
|
|
if "output_2" not in st.session_state: |
|
img_2 = Image.open('prediction_visual.png') |
|
st.session_state["output_2"] = img_2.resize((4960,3508)) |
|
|
|
if "output_3" not in st.session_state: |
|
st.session_state["output_3"] = coco_df |
|
|
|
if "output_4" not in st.session_state: |
|
st.session_state["output_4"] = output_df |
|
|
|
|
|
col1, col2, col3 = st.columns(3, gap='medium') |
|
with col1: |
|
with st.expander('How to use it'): |
|
st.markdown( |
|
''' |
|
1) Upload or select any example diagram ππ» |
|
2) Set model parameters π |
|
3) Press to perform inference π |
|
4) Visualize model predictions π |
|
''' |
|
) |
|
|
|
st.write('##') |
|
|
|
col1, col2, col3 = st.columns(3, gap='large') |
|
with col1: |
|
st.markdown('##### Set Input Image') |
|
|
|
image_file = st.file_uploader( |
|
'Upload your P&ID', type = ['jpg','jpeg','png'] |
|
) |
|
|
|
def radio_func(option): |
|
option_to_id = { |
|
'factory_pid.png' : 'A', |
|
'plant_pid.png' : 'B', |
|
'processing_pid.png' : 'C', |
|
} |
|
return option_to_id[option] |
|
radio = st.radio( |
|
'Select from the following examples', |
|
options = ['factory_pid.png', 'plant_pid.png', 'processing_pid.png'], |
|
format_func = radio_func, |
|
) |
|
with col2: |
|
|
|
if image_file is not None: |
|
image = Image.open(image_file) |
|
else: |
|
image = sahi.utils.cv.read_image_as_pil(IMAGE_TO_URL[radio]) |
|
st.markdown('##### Preview') |
|
with st.container(border = True): |
|
st.image(image, use_column_width = True) |
|
|
|
with col3: |
|
|
|
st.markdown('##### Set model parameters') |
|
slice_number = st.select_slider( |
|
'Slices per Image', |
|
options = [ |
|
'1', |
|
'4', |
|
'16', |
|
'64', |
|
], |
|
value = '4' |
|
) |
|
overlap_ratio = st.slider( |
|
label = 'Slicing Overlap Ratio', |
|
min_value=0.0, |
|
max_value=0.5, |
|
value=0.1, |
|
step=0.1 |
|
) |
|
postprocess_match_threshold = st.slider( |
|
label = 'Confidence Threshold', |
|
min_value = 0.0, |
|
max_value = 1.0, |
|
value = 0.85, |
|
step = 0.05 |
|
) |
|
|
|
st.write('##') |
|
|
|
col1, col2, col3 = st.columns([4, 1, 4]) |
|
with col2: |
|
submit = st.button("π Perform Prediction") |
|
|
|
if submit: |
|
|
|
with st.spinner(text="Downloading model weights ... "): |
|
detection_model = get_model(postprocess_match_threshold) |
|
|
|
slice_size = int(4960/(float(slice_number)**0.5)) |
|
image_size = 4960 |
|
|
|
with st.spinner(text="Performing prediction ... "): |
|
output_visual,coco_df,output_df = sahi_yolov8m_inference( |
|
image, |
|
detection_model, |
|
image_size=image_size, |
|
slice_height=slice_size, |
|
slice_width=slice_size, |
|
overlap_height_ratio=overlap_ratio, |
|
overlap_width_ratio=overlap_ratio, |
|
) |
|
|
|
st.session_state["output_1"] = image |
|
st.session_state["output_2"] = output_visual |
|
st.session_state["output_3"] = coco_df |
|
st.session_state["output_4"] = output_df |
|
|
|
st.write('##') |
|
|
|
col1, col2, col3 = st.columns([1, 5, 1], gap='small') |
|
with col2: |
|
st.markdown(f"#### Object Detection Result") |
|
with st.container(border = True): |
|
tab1, tab2, tab3, tab4 = st.tabs(['Original Image','Inference Prediction','Data','Insights']) |
|
with tab1: |
|
st.image(st.session_state["output_1"]) |
|
with tab2: |
|
st.image(st.session_state["output_2"]) |
|
with tab3: |
|
col1,col2,col3 = st.columns([1,2,1]) |
|
with col2: |
|
st.dataframe( |
|
st.session_state["output_3"], |
|
column_config = { |
|
'category' : 'Predicted Category', |
|
'score' : 'Confidence', |
|
}, |
|
use_container_width = True, |
|
hide_index = True, |
|
) |
|
with tab4: |
|
col1,col2,col3 = st.columns([1,4,1]) |
|
with col2: |
|
chart_data = st.session_state["output_4"] |
|
st.bar_chart(chart_data[['category','count']], x='Object Category', y='NΒ°', use_container_width=True, horizontal=False) |
|
|
|
|
|
|