Spaces:
Runtime error
Runtime error
import base64 | |
import os | |
import streamlit as st | |
from langchain.chains import RetrievalQA | |
from langchain.document_loaders import PDFMinerLoader | |
from langchain.embeddings import SentenceTransformerEmbeddings | |
from langchain.llms import HuggingFacePipeline | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.vectorstores import FAISS | |
from streamlit_chat import message | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline | |
import torch | |
st.set_page_config(layout="wide") | |
def process_answer(instruction, qa_chain): | |
response = '' | |
generated_text = qa_chain.run(instruction) | |
return generated_text | |
def get_file_size(file): | |
file.seek(0, os.SEEK_END) | |
file_size = file.tell() | |
file.seek(0) | |
return file_size | |
def data_ingestion(): | |
for root, dirs, files in os.walk("docs"): | |
for file in files: | |
if file.endswith(".pdf"): | |
print(file) | |
loader = PDFMinerLoader(os.path.join(root, file)) | |
documents = loader.load() | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=500) | |
splits = text_splitter.split_documents(documents) | |
# create embeddings here | |
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") | |
vectordb = FAISS.from_documents(splits, embeddings) | |
vectordb.save_local("faiss_index") | |
def initialize_qa_chain(selected_model): | |
# Constants | |
CHECKPOINT = selected_model | |
TOKENIZER = AutoTokenizer.from_pretrained(CHECKPOINT) | |
BASE_MODEL = AutoModelForSeq2SeqLM.from_pretrained(CHECKPOINT, device_map=torch.device('cpu'), torch_dtype=torch.float32) | |
pipe = pipeline( | |
'text2text-generation', | |
model=BASE_MODEL, | |
tokenizer=TOKENIZER, | |
max_length=256, | |
do_sample=True, | |
temperature=0.3, | |
top_p=0.95, | |
# device=torch.device('cpu') | |
) | |
llm = HuggingFacePipeline(pipeline=pipe) | |
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") | |
vectordb = FAISS.load_local("faiss_index", embeddings) | |
# Build a QA chain | |
qa_chain = RetrievalQA.from_chain_type( | |
llm=llm, | |
chain_type="stuff", | |
retriever=vectordb.as_retriever(), | |
) | |
return qa_chain | |
# function to display the PDF of a given file | |
def display_pdf(file): | |
try: | |
# Opening file from file path | |
with open(file, "rb") as f: | |
base64_pdf = base64.b64encode(f.read()).decode('utf-8') | |
# Embedding PDF in HTML | |
pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>' | |
# Displaying File | |
st.markdown(pdf_display, unsafe_allow_html=True) | |
except Exception as e: | |
st.error(f"An error occurred while displaying the PDF: {e}") | |
# Display conversation history using Streamlit messages | |
def display_conversation(history): | |
for i in range(len(history["generated"])): | |
message(history["past"][i], is_user=True, key=f"{i}_user") | |
message(history["generated"][i], key=str(i)) | |
def main(): | |
# Add a sidebar for model selection | |
model_options = ["MBZUAI/LaMini-T5-738M", "google/flan-t5-base", "google/flan-t5-small"] | |
selected_model = st.sidebar.selectbox("Select Model", model_options) | |
st.markdown("<h1 style='text-align: center; color: blue;'>Custom PDF Chatbot π¦π </h1>", unsafe_allow_html=True) | |
st.markdown("<h2 style='text-align: center; color:red;'>Upload your PDF, and Ask Questions π</h2>", unsafe_allow_html=True) | |
uploaded_file = st.file_uploader("", type=["pdf"]) | |
if uploaded_file is not None: | |
file_details = { | |
"Filename": uploaded_file.name, | |
"File size": get_file_size(uploaded_file) | |
} | |
os.makedirs("docs", exist_ok=True) | |
filepath = os.path.join("docs", uploaded_file.name) | |
try: | |
with open(filepath, "wb") as temp_file: | |
temp_file.write(uploaded_file.read()) | |
col1, col2 = st.columns([1, 2]) | |
with col1: | |
st.markdown("<h4 style color:black;'>File details</h4>", unsafe_allow_html=True) | |
st.json(file_details) | |
st.markdown("<h4 style color:black;'>File preview</h4>", unsafe_allow_html=True) | |
pdf_view = display_pdf(filepath) | |
with col2: | |
st.success(f'model selected successfully: {selected_model}') | |
with st.spinner('Embeddings are in process...'): | |
ingested_data = data_ingestion() | |
st.success('Embeddings are created successfully!') | |
st.markdown("<h4 style color:black;'>Chat Here</h4>", unsafe_allow_html=True) | |
user_input = st.text_input("", key="input") | |
# Initialize session state for generated responses and past messages | |
if "generated" not in st.session_state: | |
st.session_state["generated"] = ["I am ready to help you"] | |
if "past" not in st.session_state: | |
st.session_state["past"] = ["Hey there!"] | |
# Search the database for a response based on user input and update session state | |
if user_input: | |
answer = process_answer({'query': user_input}, initialize_qa_chain(selected_model)) | |
st.session_state["past"].append(user_input) | |
response = answer | |
st.session_state["generated"].append(response) | |
# Display conversation history using Streamlit messages | |
if st.session_state["generated"]: | |
display_conversation(st.session_state) | |
except Exception as e: | |
st.error(f"An error occurred: {e}") | |
if __name__ == "__main__": | |
main() | |