Daniel1213 commited on
Commit
d2e97f3
β€’
1 Parent(s): 6d82750

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -133
app.py CHANGED
@@ -1,147 +1,55 @@
1
- import io
2
- import random
3
- from typing import List, Tuple
4
-
5
- import aiohttp
6
  import panel as pn
7
- from PIL import Image
8
- from transformers import CLIPModel, CLIPProcessor
9
-
10
- pn.extension(design="bootstrap", sizing_mode="stretch_width")
11
-
12
- ICON_URLS = {
13
- "brand-github": "https://github.com/holoviz/panel",
14
- "brand-twitter": "https://twitter.com/Panel_Org",
15
- "brand-linkedin": "https://www.linkedin.com/company/panel-org",
16
- "message-circle": "https://discourse.holoviz.org/",
17
- "brand-discord": "https://discord.gg/AXRHnJU6sP",
18
- }
19
-
20
-
21
- async def random_url(_):
22
- pet = random.choice(["cat", "dog"])
23
- api_url = f"https://api.the{pet}api.com/v1/images/search"
24
- async with aiohttp.ClientSession() as session:
25
- async with session.get(api_url) as resp:
26
- return (await resp.json())[0]["url"]
27
-
28
-
29
- @pn.cache
30
- def load_processor_model(
31
- processor_name: str, model_name: str
32
- ) -> Tuple[CLIPProcessor, CLIPModel]:
33
- processor = CLIPProcessor.from_pretrained(processor_name)
34
- model = CLIPModel.from_pretrained(model_name)
35
- return processor, model
36
-
37
 
38
- async def open_image_url(image_url: str) -> Image:
39
- async with aiohttp.ClientSession() as session:
40
- async with session.get(image_url) as resp:
41
- return Image.open(io.BytesIO(await resp.read()))
42
 
 
43
 
44
- def get_similarity_scores(class_items: List[str], image: Image) -> List[float]:
45
- processor, model = load_processor_model(
46
- "openai/clip-vit-base-patch32", "openai/clip-vit-base-patch32"
47
- )
48
- inputs = processor(
49
- text=class_items,
50
- images=[image],
51
- return_tensors="pt", # pytorch tensors
52
- )
53
- outputs = model(**inputs)
54
- logits_per_image = outputs.logits_per_image
55
- class_likelihoods = logits_per_image.softmax(dim=1).detach().numpy()
56
- return class_likelihoods[0]
57
 
 
 
 
58
 
59
- async def process_inputs(class_names: List[str], image_url: str):
60
- """
61
- High level function that takes in the user inputs and returns the
62
- classification results as panel objects.
63
- """
64
- try:
65
- main.disabled = True
66
- if not image_url:
67
- yield "##### ⚠️ Provide an image URL"
68
- return
69
-
70
- yield "##### βš™ Fetching image and running model..."
71
- try:
72
- pil_img = await open_image_url(image_url)
73
- img = pn.pane.Image(pil_img, height=400, align="center")
74
- except Exception as e:
75
- yield f"##### πŸ˜” Something went wrong, please try a different URL!"
76
- return
77
-
78
- class_items = class_names.split(",")
79
- class_likelihoods = get_similarity_scores(class_items, pil_img)
80
-
81
- # build the results column
82
- results = pn.Column("##### πŸŽ‰ Here are the results!", img)
83
-
84
- for class_item, class_likelihood in zip(class_items, class_likelihoods):
85
- row_label = pn.widgets.StaticText(
86
- name=class_item.strip(), value=f"{class_likelihood:.2%}", align="center"
87
- )
88
- row_bar = pn.indicators.Progress(
89
- value=int(class_likelihood * 100),
90
- sizing_mode="stretch_width",
91
- bar_color="secondary",
92
- margin=(0, 10),
93
- design=pn.theme.Material,
94
- )
95
- results.append(pn.Column(row_label, row_bar))
96
- yield results
97
- finally:
98
- main.disabled = False
99
 
 
100
 
101
- # create widgets
102
- randomize_url = pn.widgets.Button(name="Randomize URL", align="end")
 
 
 
103
 
104
- image_url = pn.widgets.TextInput(
105
- name="Image URL to classify",
106
- value=pn.bind(random_url, randomize_url),
107
- )
108
- class_names = pn.widgets.TextInput(
109
- name="Comma separated class names",
110
- placeholder="Enter possible class names, e.g. cat, dog",
111
- value="cat, dog, parrot",
112
- )
113
 
114
- input_widgets = pn.Column(
115
- "##### 😊 Click randomize or paste a URL to start classifying!",
116
- pn.Row(image_url, randomize_url),
117
- class_names,
118
- )
119
 
120
- # add interactivity
121
- interactive_result = pn.panel(
122
- pn.bind(process_inputs, image_url=image_url, class_names=class_names),
123
- height=600,
124
- )
125
 
126
- # add footer
127
- footer_row = pn.Row(pn.Spacer(), align="center")
128
- for icon, url in ICON_URLS.items():
129
- href_button = pn.widgets.Button(icon=icon, width=35, height=35)
130
- href_button.js_on_click(code=f"window.open('{url}')")
131
- footer_row.append(href_button)
132
- footer_row.append(pn.Spacer())
133
 
134
- # create dashboard
135
- main = pn.WidgetBox(
136
- input_widgets,
137
- interactive_result,
138
- footer_row,
139
- )
140
 
141
- title = "Panel Demo - Image Classification"
142
- pn.template.BootstrapTemplate(
143
- title=title,
144
- main=main,
145
- main_max_width="min(50%, 698px)",
146
- header_background="#F08080",
147
- ).servable(title=title)
 
 
 
 
 
 
1
  import panel as pn
2
+ import numpy as np
3
+ import pandas as pd
4
+ from bokeh.layouts import column, row
5
+ from bokeh.models import ColumnDataSource, Slider, TextInput
6
+ from bokeh.plotting import figure
7
+ # Set up data
8
+ N = 200
9
+ x = np.linspace(0, 4*np.pi, N)
10
+ y = np.sin(x)
11
+ source = ColumnDataSource(data=dict(x=x, y=y))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
+ # Set up plot
14
+ plot = figure(height=400, width=400, title="my sine wave",
15
+ tools="crosshair,pan,reset,save,wheel_zoom",
16
+ x_range=[0, 4*np.pi], y_range=[-2.5, 2.5])
17
 
18
+ plot.line('x', 'y', source=source, line_width=3, line_alpha=0.6)
19
 
20
+ # Set up widgets
21
+ text = TextInput(title="title", value='my sine wave')
22
+ offset = Slider(title="offset", value=0.0, start=-5.0, end=5.0, step=0.1)
23
+ amplitude = Slider(title="amplitude", value=1.0, start=-5.0, end=5.0, step=0.1)
24
+ phase = Slider(title="phase", value=0.0, start=0.0, end=2*np.pi)
25
+ freq = Slider(title="frequency", value=1.0, start=0.1, end=5.1, step=0.1)
 
 
 
 
 
 
 
26
 
27
+ # Set up callbacks
28
+ def update_title(attrname, old, new):
29
+ plot.title.text = text.value
30
 
31
+ text.on_change('value', update_title)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
+ def update_data(attrname, old, new):
34
 
35
+ # Get the current slider values
36
+ a = amplitude.value
37
+ b = offset.value
38
+ w = phase.value
39
+ k = freq.value
40
 
41
+ # Generate the new curve
42
+ x = np.linspace(0, 4*np.pi, N)
43
+ y = a*np.sin(k*x + w) + b
 
 
 
 
 
 
44
 
45
+ source.data = dict(x=x, y=y)
 
 
 
 
46
 
47
+ for w in [offset, amplitude, phase, freq]:
48
+ w.on_change('value', update_data)
 
 
 
49
 
50
+ # Set up layouts and add to document
51
+ inputs = column(text, offset, amplitude, phase, freq)
 
 
 
 
 
52
 
53
+ bokeh_app = pn.pane.Bokeh(row(inputs, plot, width=800))
 
 
 
 
 
54
 
55
+ bokeh_app.servable()