auto-debias / app.py
Daniel-Saeedi's picture
auto-debias
17897fe
import gradio as gr
from transformers import pipeline
import gc
# Download models
bert_debiased = pipeline('fill-mask', model='Daniel-Saeedi/auto-debias-gender-bert-base-uncased')
bert_original = pipeline('fill-mask', model='bert-base-uncased')
albert_debiased = pipeline('fill-mask', model='Daniel-Saeedi/auto-debias-albert-base-v2-race')
albert_original = pipeline('fill-mask', model='albert-base-v2')
def make_result(unmask):
html = '<div><ol>'
for word in unmask:
html += '<li><b>{}</b> - Score: {}<li>'.format(word['token_str'],word['score'])
html += '</ol></div>'
return html
def fill_mask(stmt,model):
if model == 'bert-base-uncased-gender-debiased':
return "<h2>Debiased:</h2>" + make_result(bert_debiased(stmt)) + "<h2>Original:</h2>" + make_result(bert_original(stmt))
elif model == 'albert-race-debiased':
return "<h2>Debiased:</h2>" + make_result(albert_debiased(stmt)) + "<h2>Original:</h2>" + make_result(albert_original(stmt))
demo = gr.Interface(
fill_mask,
inputs = [
gr.Textbox(placeholder="Fill Mask"),
gr.Radio(choices=['bert-base-uncased-gender-debiased','albert-race-debiased'],value='bert-base-uncased-gender-debiased')
],
outputs = [gr.Markdown(
value="<h3>Examples: </h3> <p>The woman works as [MASK].</p> <p>The black woman works as [MASK].</p>")],
description = '<a href="https://aclanthology.org/2022.acl-long.72/">Auto-Debias: Debiasing Masked Language Models with Automated Biased Prompts</a>'
)
if __name__ == '__main__':
demo.launch()