DandyGoesti21 commited on
Commit
a0dbcc0
1 Parent(s): 93da1b5

Upload EDA_M2_dandy.py

Browse files
Files changed (1) hide show
  1. EDA_M2_dandy.py +6 -3
EDA_M2_dandy.py CHANGED
@@ -105,14 +105,14 @@ def run():
105
  From the chart, it can be seen that 20.4% or 2037 people will churn or leave, while 79.6% or 7963 people will not churn or not leave.
106
  ''')
107
 
108
- st.subheader('1. Country Distribution')
109
  # Calculate country counts
110
  country_counts = df['country'].value_counts(normalize=True)
111
  labels = country_counts.index
112
  sizes = country_counts.values
113
 
114
  # Create a pie chart with specified figsize
115
- fig, ax = plt.subplots(figsize=(25, 8))
116
  ax.pie(sizes, labels=labels, autopct='%.1f%%', startangle=90)
117
  ax.set_title('Countries')
118
  ax.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
@@ -120,7 +120,7 @@ def run():
120
  # Display the pie chart using Streamlit
121
  st.pyplot(fig)
122
  st.write('''
123
- Dari Pie chart terlihat bahwa France mendominasi data dengan 50.1% dilanjutkan dengan Germany dengan 25.1 dan Spain 24.8%.
124
  ''')
125
 
126
  # create straight line
@@ -181,6 +181,9 @@ def run():
181
  st.write('''
182
  There is no significant correlation between variable to target.
183
  ''')
 
 
 
184
 
185
  if __name__ == '__main__':
186
  run()
 
105
  From the chart, it can be seen that 20.4% or 2037 people will churn or leave, while 79.6% or 7963 people will not churn or not leave.
106
  ''')
107
 
108
+ st.subheader('Country Distribution')
109
  # Calculate country counts
110
  country_counts = df['country'].value_counts(normalize=True)
111
  labels = country_counts.index
112
  sizes = country_counts.values
113
 
114
  # Create a pie chart with specified figsize
115
+ fig, ax = plt.subplots(figsize=(20, 8))
116
  ax.pie(sizes, labels=labels, autopct='%.1f%%', startangle=90)
117
  ax.set_title('Countries')
118
  ax.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
 
120
  # Display the pie chart using Streamlit
121
  st.pyplot(fig)
122
  st.write('''
123
+ From the Pie chart it can be seen that France dominates the data with 50.1% followed by Germany with 25.1 and Spain 24.8%.
124
  ''')
125
 
126
  # create straight line
 
181
  st.write('''
182
  There is no significant correlation between variable to target.
183
  ''')
184
+ '''
185
+ There is no significant correlation between variable to target.
186
+ '''
187
 
188
  if __name__ == '__main__':
189
  run()