DanMa16 commited on
Commit
c8f456a
·
1 Parent(s): e111aca

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -64
app.py DELETED
@@ -1,64 +0,0 @@
1
- import gradio as gr
2
- from ultralyticsplus import YOLO, render_result
3
-
4
-
5
- def yoloV8_func(image: gr.inputs.Image = None,
6
- image_size: gr.inputs.Slider = 640,
7
- conf_threshold: gr.inputs.Slider = 0.4,
8
- iou_threshold: gr.inputs.Slider = 0.50):
9
- """This function performs YOLOv8 object detection on the given image.
10
-
11
- Args:
12
- image (gr.inputs.Image, optional): Input image to detect objects on. Defaults to None.
13
- image_size (gr.inputs.Slider, optional): Desired image size for the model. Defaults to 640.
14
- conf_threshold (gr.inputs.Slider, optional): Confidence threshold for object detection. Defaults to 0.4.
15
- iou_threshold (gr.inputs.Slider, optional): Intersection over Union threshold for object detection. Defaults to 0.50.
16
- """
17
- # Load the YOLOv8 model from the 'best.pt' checkpoint
18
- model_path = "best.pt"
19
- model = YOLO(model_path)
20
-
21
- # Perform object detection on the input image using the YOLOv8 model
22
- results = model.predict(image,
23
- conf=conf_threshold,
24
- iou=iou_threshold,
25
- imgsz=image_size)
26
-
27
- # Print the detected objects' information (class, coordinates, and probability)
28
- box = results[0].boxes
29
- print("Object type:", box.cls)
30
- print("Coordinates:", box.xyxy)
31
- print("Probability:", box.conf)
32
-
33
- # Render the output image with bounding boxes around detected objects
34
- render = render_result(model=model, image=image, result=results[0])
35
- return render
36
-
37
-
38
- inputs = [
39
- gr.inputs.Image(type="filepath", label="Input Image"),
40
- gr.inputs.Slider(minimum=320, maximum=1280, default=640,
41
- step=32, label="Image Size"),
42
- gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25,
43
- step=0.05, label="Confidence Threshold"),
44
- gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45,
45
- step=0.05, label="IOU Threshold"),
46
- ]
47
-
48
-
49
- outputs = gr.outputs.Image(type="filepath", label="Output Image")
50
-
51
- title = "Water Meter"
52
-
53
-
54
-
55
- yolo_app = gr.Interface(
56
- fn=yoloV8_func,
57
- inputs=inputs,
58
- outputs=outputs,
59
- title=title,
60
- cache_examples=True,
61
- )
62
-
63
- # Launch the Gradio interface in debug mode with queue enabled
64
- yolo_app.launch(debug=True, enable_queue=True)