Spaces:
Sleeping
Sleeping
DanLeBossDeESGI
commited on
Commit
·
beb5f8e
1
Parent(s):
be80b10
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
-
import streamlit as st
|
2 |
import torch
|
|
|
3 |
from diffusers import AudioLDMPipeline
|
4 |
from transformers import AutoProcessor, ClapModel
|
5 |
|
@@ -22,21 +22,6 @@ processor = AutoProcessor.from_pretrained("sanchit-gandhi/clap-htsat-unfused-m-f
|
|
22 |
|
23 |
generator = torch.Generator(device)
|
24 |
|
25 |
-
# Streamlit app setup
|
26 |
-
st.set_page_config(
|
27 |
-
page_title="Text to Music",
|
28 |
-
page_icon="🎵",
|
29 |
-
)
|
30 |
-
|
31 |
-
text_input = st.text_input("Input text", "A hammer is hitting a wooden surface")
|
32 |
-
negative_prompt = st.text_input("Negative prompt", "low quality, average quality")
|
33 |
-
|
34 |
-
st.markdown("### Configuration")
|
35 |
-
seed = st.number_input("Seed", value=45)
|
36 |
-
duration = st.slider("Duration (seconds)", 2.5, 10.0, 5.0, 2.5)
|
37 |
-
guidance_scale = st.slider("Guidance scale", 0.0, 4.0, 2.5, 0.5)
|
38 |
-
n_candidates = st.slider("Number waveforms to generate", 1, 3, 3, 1)
|
39 |
-
|
40 |
def score_waveforms(text, waveforms):
|
41 |
inputs = processor(text=text, audios=list(waveforms), return_tensors="pt", padding=True)
|
42 |
inputs = {key: inputs[key].to(device) for key in inputs}
|
@@ -47,24 +32,39 @@ def score_waveforms(text, waveforms):
|
|
47 |
waveform = waveforms[most_probable]
|
48 |
return waveform
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
else:
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
guidance_scale=guidance_scale,
|
58 |
-
num_inference_steps=100,
|
59 |
-
negative_prompt=negative_prompt,
|
60 |
-
num_waveforms_per_prompt=n_candidates if n_candidates else 1,
|
61 |
-
generator=generator.manual_seed(int(seed)),
|
62 |
-
)["audios"]
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
|
70 |
-
st.audio(waveform, format="audio/wav", sample_rate=16000)
|
|
|
|
|
1 |
import torch
|
2 |
+
import gradio as gr
|
3 |
from diffusers import AudioLDMPipeline
|
4 |
from transformers import AutoProcessor, ClapModel
|
5 |
|
|
|
22 |
|
23 |
generator = torch.Generator(device)
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
def score_waveforms(text, waveforms):
|
26 |
inputs = processor(text=text, audios=list(waveforms), return_tensors="pt", padding=True)
|
27 |
inputs = {key: inputs[key].to(device) for key in inputs}
|
|
|
32 |
waveform = waveforms[most_probable]
|
33 |
return waveform
|
34 |
|
35 |
+
def text_to_music(text_input, negative_prompt, seed, duration, guidance_scale, n_candidates):
|
36 |
+
waveforms = pipe(
|
37 |
+
text_input,
|
38 |
+
audio_length_in_s=duration,
|
39 |
+
guidance_scale=guidance_scale,
|
40 |
+
num_inference_steps=100,
|
41 |
+
negative_prompt=negative_prompt,
|
42 |
+
num_waveforms_per_prompt=n_candidates if n_candidates else 1,
|
43 |
+
generator=generator.manual_seed(int(seed)),
|
44 |
+
)["audios"]
|
45 |
+
|
46 |
+
if waveforms.shape[0] > 1:
|
47 |
+
waveform = score_waveforms(text_input, waveforms)
|
48 |
else:
|
49 |
+
waveform = waveforms[0]
|
50 |
+
|
51 |
+
return waveform.detach().cpu().numpy()
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
iface = gr.Interface(
|
54 |
+
fn=text_to_music,
|
55 |
+
inputs=[
|
56 |
+
gr.inputs.Textbox(label="Input text", default="A hammer is hitting a wooden surface"),
|
57 |
+
gr.inputs.Textbox(label="Negative prompt", default="low quality, average quality"),
|
58 |
+
gr.inputs.Number(label="Seed", default=45),
|
59 |
+
gr.inputs.Slider(label="Duration (seconds)", minimum=2.5, maximum=10.0, default=5.0, step=0.1),
|
60 |
+
gr.inputs.Slider(label="Guidance scale", minimum=0.0, maximum=4.0, default=2.5, step=0.1),
|
61 |
+
gr.inputs.Slider(label="Number waveforms to generate", minimum=1, maximum=3, default=3, step=1),
|
62 |
+
],
|
63 |
+
outputs=gr.outputs.Audio(label="Generated Audio", type="numpy"),
|
64 |
+
live=True,
|
65 |
+
title="Text to Music",
|
66 |
+
description="Convert text into music using a pre-trained model.",
|
67 |
+
theme="default",
|
68 |
+
)
|
69 |
|
70 |
+
iface.launch()
|
|