DanGalt commited on
Commit
ea87393
·
verified ·
1 Parent(s): fe806a1

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +125 -0
app.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import ast
2
+ from pathlib import Path
3
+
4
+ import gradio as gr
5
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
6
+ import torch
7
+ from torch import nn
8
+
9
+
10
+ model_id = "answerdotai/ModernBERT-base"
11
+ path = "DanGalt/modernbert-code-comrel-synthetic"
12
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
13
+ model = AutoModelForSequenceClassification.from_pretrained(path)
14
+ sep = "[SEP]"
15
+
16
+
17
+ def prepare_input(example):
18
+ tokens = tokenizer(
19
+ example["function_definition"] + sep + example["code"] + sep + example["comment"],
20
+ truncation=True,
21
+ max_length=1024,
22
+ return_tensors="pt"
23
+ )
24
+ return tokens
25
+
26
+
27
+ def parse_text(text):
28
+ # NOTE: Doesn't collect comments and function definitions correctly
29
+ inputs = []
30
+ defs = []
31
+ tree = ast.parse(text)
32
+ for el in tree.body:
33
+ if isinstance(el, ast.FunctionDef):
34
+ defs.append((el.lineno - 1, el.end_lineno - 1, el.col_offset))
35
+
36
+ inputs = []
37
+ lines = text.split('\n')
38
+ for lineno, line in enumerate(lines):
39
+ if (offset := line.find('#')) != -1:
40
+ corresponding_def = None
41
+ for (def_l, def_el, def_off) in defs:
42
+ if def_l <= lineno and def_off <= offset:
43
+ corresponding_def = (def_l, def_el, def_off)
44
+
45
+ comment = line[offset:]
46
+ code = '\n'.join(lines[lineno - 4:lineno + 4])
47
+ fdef = "None"
48
+ if corresponding_def is not None:
49
+ fdef = [lines[corresponding_def[0]][corresponding_def[2]:]]
50
+ cur_lineno = corresponding_def[0]
51
+ while cur_lineno <= corresponding_def[1]:
52
+ if lines[cur_lineno].find("):") != -1 or lines[cur_lineno].find("->") != -1:
53
+ fdef += lines[corresponding_def[0] + 1:cur_lineno + 1]
54
+ break
55
+ cur_lineno += 1
56
+
57
+ fdef = '\n'.join(fdef).strip()
58
+
59
+ inputs.append({
60
+ "function_definition": fdef,
61
+ "code": code,
62
+ "comment": comment,
63
+ "lineno": lineno
64
+ })
65
+ return inputs
66
+
67
+
68
+ def predict(inp, model=model):
69
+ with torch.no_grad():
70
+ out = model(**inp)
71
+ return nn.functional.softmax(out.logits, dim=-1)[0, 1].item()
72
+
73
+
74
+ def parse_and_predict(text, thrd=0.0):
75
+ parsed = parse_text(text)
76
+ preds = [predict(prepare_input(p)) for p in parsed]
77
+ result = []
78
+ for i, p in enumerate(preds):
79
+ if thrd > 0:
80
+ p = thrd > p
81
+ result.append((parsed[i]["lineno"], p))
82
+
83
+ return result
84
+
85
+
86
+ def parse_and_predict_file(path, thrd=0.0):
87
+ text = Path(path).open("r").read()
88
+ return parse_and_predict(text, thrd)
89
+
90
+
91
+ def parse_and_predict_pretty_out(text, thrd=0.0):
92
+ results = parse_and_predict(text, thrd=thrd)
93
+ lines = text.split('\n')
94
+ output = []
95
+ if thrd > 0:
96
+ for lineno, do_warn in results:
97
+ if do_warn:
98
+ output.append(f"The comment on line {lineno} is incorrect: '{lines[lineno]}'.")
99
+ else:
100
+ for lineno, p in results:
101
+ output.append(f"The comment on line {lineno} is estimated to be correct with probability {p:.2f}: '{lines[lineno]}'.")
102
+ return '\n'.join(output)
103
+
104
+
105
+ example_text = """a = 3
106
+ b = 2
107
+ # The code below does some calculations based on a predefined rule that is very important
108
+ c = a - b # Calculate and store the sum of a and b in c
109
+ d = a + b # Calculate and store the sum of a and b in d
110
+ e = c * b # Calculate and store the product of c and d in e
111
+ print(f"Wow, maths: {[a, b, c, d, e]}")"""
112
+
113
+ gradio_app = gr.Interface(
114
+ fn=parse_and_predict_pretty_out,
115
+ inputs=[
116
+ gr.Textbox(label="Input", lines=7),
117
+ gr.Slider(value=0.8, minimum=0.0, maximum=1.0, step=0.05)],
118
+ outputs=[gr.Textbox(label="Predictions", lines=7)],
119
+ examples=[[example_text, 0.0], [example_text, 0.53]],
120
+ title="Comment \"Correctness\" Classifier",
121
+ description='Calculates probabilities for each comment in text to be "correct"/"relevant". If the threshold is 0, outputs raw predictions. Otherwise, will report only "incorrect" comments.'
122
+ )
123
+
124
+ if __name__ == "__main__":
125
+ gradio_app.launch()