|
import random |
|
|
|
import PIL.Image |
|
import cv2 |
|
import numpy as np |
|
import torch |
|
from diffusers import PNDMScheduler, DDIMScheduler |
|
from loguru import logger |
|
from transformers import FeatureExtractionMixin, ImageFeatureExtractionMixin |
|
|
|
from lama_cleaner.helper import norm_img |
|
|
|
from lama_cleaner.model.base import InpaintModel |
|
from lama_cleaner.schema import Config, SDSampler |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class DummyFeatureExtractorOutput: |
|
def __init__(self, pixel_values): |
|
self.pixel_values = pixel_values |
|
|
|
def to(self, device): |
|
return self |
|
|
|
|
|
class DummyFeatureExtractor(FeatureExtractionMixin, ImageFeatureExtractionMixin): |
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
def __call__(self, *args, **kwargs): |
|
return DummyFeatureExtractorOutput(torch.empty(0, 3)) |
|
|
|
|
|
class DummySafetyChecker: |
|
def __init__(self, *args, **kwargs): |
|
pass |
|
|
|
def __call__(self, clip_input, images): |
|
return images, False |
|
|
|
|
|
class SD(InpaintModel): |
|
pad_mod = 64 |
|
min_size = 512 |
|
|
|
def init_model(self, device: torch.device, **kwargs): |
|
from .sd_pipeline import StableDiffusionInpaintPipeline |
|
|
|
model_kwargs = {"local_files_only": kwargs['sd_run_local']} |
|
if kwargs['sd_disable_nsfw']: |
|
logger.info("Disable Stable Diffusion Model NSFW checker") |
|
model_kwargs.update(dict( |
|
feature_extractor=DummyFeatureExtractor(), |
|
safety_checker=DummySafetyChecker(), |
|
)) |
|
|
|
self.model = StableDiffusionInpaintPipeline.from_pretrained( |
|
self.model_id_or_path, |
|
revision="fp16" if torch.cuda.is_available() else "main", |
|
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, |
|
use_auth_token=kwargs["hf_access_token"], |
|
**model_kwargs |
|
) |
|
|
|
self.model.enable_attention_slicing() |
|
self.model = self.model.to(device) |
|
|
|
if kwargs['sd_cpu_textencoder']: |
|
logger.info("Run Stable Diffusion TextEncoder on CPU") |
|
self.model.text_encoder = self.model.text_encoder.to(torch.device('cpu'), non_blocking=True) |
|
self.model.text_encoder = self.model.text_encoder.to(torch.float32, non_blocking=True ) |
|
|
|
self.callbacks = kwargs.pop("callbacks", None) |
|
|
|
@torch.cuda.amp.autocast() |
|
def forward(self, image, mask, config: Config): |
|
"""Input image and output image have same size |
|
image: [H, W, C] RGB |
|
mask: [H, W, 1] 255 means area to repaint |
|
return: BGR IMAGE |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if config.sd_sampler == SDSampler.ddim: |
|
scheduler = DDIMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
) |
|
elif config.sd_sampler == SDSampler.pndm: |
|
PNDM_kwargs = { |
|
"tensor_format": "pt", |
|
"beta_schedule": "scaled_linear", |
|
"beta_start": 0.00085, |
|
"beta_end": 0.012, |
|
"num_train_timesteps": 1000, |
|
"skip_prk_steps": True, |
|
} |
|
scheduler = PNDMScheduler(**PNDM_kwargs) |
|
else: |
|
raise ValueError(config.sd_sampler) |
|
|
|
self.model.scheduler = scheduler |
|
|
|
seed = config.sd_seed |
|
random.seed(seed) |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed_all(seed) |
|
|
|
if config.sd_mask_blur != 0: |
|
k = 2 * config.sd_mask_blur + 1 |
|
mask = cv2.GaussianBlur(mask, (k, k), 0)[:, :, np.newaxis] |
|
|
|
output = self.model( |
|
prompt=config.prompt, |
|
init_image=PIL.Image.fromarray(image), |
|
mask_image=PIL.Image.fromarray(mask[:, :, -1], mode="L"), |
|
strength=config.sd_strength, |
|
num_inference_steps=config.sd_steps, |
|
guidance_scale=config.sd_guidance_scale, |
|
output_type="np.array", |
|
callbacks=self.callbacks, |
|
).images[0] |
|
|
|
output = (output * 255).round().astype("uint8") |
|
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR) |
|
return output |
|
|
|
@torch.no_grad() |
|
def __call__(self, image, mask, config: Config): |
|
""" |
|
images: [H, W, C] RGB, not normalized |
|
masks: [H, W] |
|
return: BGR IMAGE |
|
""" |
|
img_h, img_w = image.shape[:2] |
|
|
|
|
|
if config.use_croper: |
|
logger.info("use croper") |
|
l, t, w, h = ( |
|
config.croper_x, |
|
config.croper_y, |
|
config.croper_width, |
|
config.croper_height, |
|
) |
|
r = l + w |
|
b = t + h |
|
|
|
l = max(l, 0) |
|
r = min(r, img_w) |
|
t = max(t, 0) |
|
b = min(b, img_h) |
|
|
|
crop_img = image[t:b, l:r, :] |
|
crop_mask = mask[t:b, l:r] |
|
|
|
crop_image = self._pad_forward(crop_img, crop_mask, config) |
|
|
|
inpaint_result = image[:, :, ::-1] |
|
inpaint_result[t:b, l:r, :] = crop_image |
|
else: |
|
inpaint_result = self._pad_forward(image, mask, config) |
|
|
|
return inpaint_result |
|
|
|
@staticmethod |
|
def is_downloaded() -> bool: |
|
|
|
return True |
|
|
|
|
|
class SD14(SD): |
|
model_id_or_path = "CompVis/stable-diffusion-v1-4" |
|
|
|
|
|
class SD15(SD): |
|
model_id_or_path = "CompVis/stable-diffusion-v1-5" |
|
|