Spaces:
Running
on
Zero
Running
on
Zero
import random | |
import PIL.Image | |
import cv2 | |
import numpy as np | |
import torch | |
from diffusers import PNDMScheduler, DDIMScheduler | |
from loguru import logger | |
from transformers import FeatureExtractionMixin, ImageFeatureExtractionMixin | |
from lama_cleaner.helper import norm_img | |
from lama_cleaner.model.base import InpaintModel | |
from lama_cleaner.schema import Config, SDSampler | |
# | |
# | |
# def preprocess_image(image): | |
# w, h = image.size | |
# w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32 | |
# image = image.resize((w, h), resample=PIL.Image.LANCZOS) | |
# image = np.array(image).astype(np.float32) / 255.0 | |
# image = image[None].transpose(0, 3, 1, 2) | |
# image = torch.from_numpy(image) | |
# # [-1, 1] | |
# return 2.0 * image - 1.0 | |
# | |
# | |
# def preprocess_mask(mask): | |
# mask = mask.convert("L") | |
# w, h = mask.size | |
# w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32 | |
# mask = mask.resize((w // 8, h // 8), resample=PIL.Image.NEAREST) | |
# mask = np.array(mask).astype(np.float32) / 255.0 | |
# mask = np.tile(mask, (4, 1, 1)) | |
# mask = mask[None].transpose(0, 1, 2, 3) # what does this step do? | |
# mask = 1 - mask # repaint white, keep black | |
# mask = torch.from_numpy(mask) | |
# return mask | |
class DummyFeatureExtractorOutput: | |
def __init__(self, pixel_values): | |
self.pixel_values = pixel_values | |
def to(self, device): | |
return self | |
class DummyFeatureExtractor(FeatureExtractionMixin, ImageFeatureExtractionMixin): | |
def __init__(self, **kwargs): | |
super().__init__(**kwargs) | |
def __call__(self, *args, **kwargs): | |
return DummyFeatureExtractorOutput(torch.empty(0, 3)) | |
class DummySafetyChecker: | |
def __init__(self, *args, **kwargs): | |
pass | |
def __call__(self, clip_input, images): | |
return images, False | |
class SD(InpaintModel): | |
pad_mod = 64 # current diffusers only support 64 https://github.com/huggingface/diffusers/pull/505 | |
min_size = 512 | |
def init_model(self, device: torch.device, **kwargs): | |
from .sd_pipeline import StableDiffusionInpaintPipeline | |
model_kwargs = {"local_files_only": kwargs['sd_run_local']} | |
if kwargs['sd_disable_nsfw']: | |
logger.info("Disable Stable Diffusion Model NSFW checker") | |
model_kwargs.update(dict( | |
feature_extractor=DummyFeatureExtractor(), | |
safety_checker=DummySafetyChecker(), | |
)) | |
self.model = StableDiffusionInpaintPipeline.from_pretrained( | |
self.model_id_or_path, | |
revision="fp16" if torch.cuda.is_available() else "main", | |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
use_auth_token=kwargs["hf_access_token"], | |
**model_kwargs | |
) | |
# https://huggingface.co/docs/diffusers/v0.3.0/en/api/pipelines/stable_diffusion#diffusers.StableDiffusionInpaintPipeline.enable_attention_slicing | |
self.model.enable_attention_slicing() | |
self.model = self.model.to(device) | |
if kwargs['sd_cpu_textencoder']: | |
logger.info("Run Stable Diffusion TextEncoder on CPU") | |
self.model.text_encoder = self.model.text_encoder.to(torch.device('cpu'), non_blocking=True) | |
self.model.text_encoder = self.model.text_encoder.to(torch.float32, non_blocking=True ) | |
self.callbacks = kwargs.pop("callbacks", None) | |
def forward(self, image, mask, config: Config): | |
"""Input image and output image have same size | |
image: [H, W, C] RGB | |
mask: [H, W, 1] 255 means area to repaint | |
return: BGR IMAGE | |
""" | |
# image = norm_img(image) # [0, 1] | |
# image = image * 2 - 1 # [0, 1] -> [-1, 1] | |
# resize to latent feature map size | |
# h, w = mask.shape[:2] | |
# mask = cv2.resize(mask, (h // 8, w // 8), interpolation=cv2.INTER_AREA) | |
# mask = norm_img(mask) | |
# | |
# image = torch.from_numpy(image).unsqueeze(0).to(self.device) | |
# mask = torch.from_numpy(mask).unsqueeze(0).to(self.device) | |
if config.sd_sampler == SDSampler.ddim: | |
scheduler = DDIMScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
clip_sample=False, | |
set_alpha_to_one=False, | |
) | |
elif config.sd_sampler == SDSampler.pndm: | |
PNDM_kwargs = { | |
"tensor_format": "pt", | |
"beta_schedule": "scaled_linear", | |
"beta_start": 0.00085, | |
"beta_end": 0.012, | |
"num_train_timesteps": 1000, | |
"skip_prk_steps": True, | |
} | |
scheduler = PNDMScheduler(**PNDM_kwargs) | |
else: | |
raise ValueError(config.sd_sampler) | |
self.model.scheduler = scheduler | |
seed = config.sd_seed | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
if config.sd_mask_blur != 0: | |
k = 2 * config.sd_mask_blur + 1 | |
mask = cv2.GaussianBlur(mask, (k, k), 0)[:, :, np.newaxis] | |
output = self.model( | |
prompt=config.prompt, | |
init_image=PIL.Image.fromarray(image), | |
mask_image=PIL.Image.fromarray(mask[:, :, -1], mode="L"), | |
strength=config.sd_strength, | |
num_inference_steps=config.sd_steps, | |
guidance_scale=config.sd_guidance_scale, | |
output_type="np.array", | |
callbacks=self.callbacks, | |
).images[0] | |
output = (output * 255).round().astype("uint8") | |
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR) | |
return output | |
def __call__(self, image, mask, config: Config): | |
""" | |
images: [H, W, C] RGB, not normalized | |
masks: [H, W] | |
return: BGR IMAGE | |
""" | |
img_h, img_w = image.shape[:2] | |
# boxes = boxes_from_mask(mask) | |
if config.use_croper: | |
logger.info("use croper") | |
l, t, w, h = ( | |
config.croper_x, | |
config.croper_y, | |
config.croper_width, | |
config.croper_height, | |
) | |
r = l + w | |
b = t + h | |
l = max(l, 0) | |
r = min(r, img_w) | |
t = max(t, 0) | |
b = min(b, img_h) | |
crop_img = image[t:b, l:r, :] | |
crop_mask = mask[t:b, l:r] | |
crop_image = self._pad_forward(crop_img, crop_mask, config) | |
inpaint_result = image[:, :, ::-1] | |
inpaint_result[t:b, l:r, :] = crop_image | |
else: | |
inpaint_result = self._pad_forward(image, mask, config) | |
return inpaint_result | |
def is_downloaded() -> bool: | |
# model will be downloaded when app start, and can't switch in frontend settings | |
return True | |
class SD14(SD): | |
model_id_or_path = "CompVis/stable-diffusion-v1-4" | |
class SD15(SD): | |
model_id_or_path = "CompVis/stable-diffusion-v1-5" | |