DamarJati commited on
Commit
ef1b10b
·
verified ·
1 Parent(s): 9456e9d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +190 -2
app.py CHANGED
@@ -1,5 +1,18 @@
1
  import gradio as gr
2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  # Daftar model dan ControlNet
4
  models = ["Model A", "Model B", "Model C"]
5
  vae = ["VAE A", "VAE B", "VAE C"]
@@ -22,6 +35,7 @@ def controlnet_process(image, controlnet_type, model):
22
  return f"Proses gambar dengan ControlNet '{controlnet_type}' dan model '{model}'"
23
 
24
  #wd tagger
 
25
  # Dataset v3 series of models:
26
  SWINV2_MODEL_DSV3_REPO = "SmilingWolf/wd-swinv2-tagger-v3"
27
  CONV_MODEL_DSV3_REPO = "SmilingWolf/wd-convnext-tagger-v3"
@@ -36,7 +50,181 @@ CONV_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-convnext-tagger-v2"
36
  CONV2_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-convnextv2-tagger-v2"
37
  VIT_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-vit-tagger-v2"
38
 
39
- dropdown_list = [
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  SWINV2_MODEL_DSV3_REPO,
41
  CONV_MODEL_DSV3_REPO,
42
  VIT_MODEL_DSV3_REPO,
@@ -47,7 +235,7 @@ dropdown_list = [
47
  CONV_MODEL_DSV2_REPO,
48
  CONV2_MODEL_DSV2_REPO,
49
  VIT_MODEL_DSV2_REPO,
50
- ]
51
 
52
  with gr.Blocks(css= "style.css") as app:
53
  # Dropdown untuk memilih model di luar tab dengan lebar kecil
 
1
  import gradio as gr
2
 
3
+ import argparse
4
+ import os
5
+
6
+ import gradio as gr
7
+ import huggingface_hub
8
+ import numpy as np
9
+ import onnxruntime as rt
10
+ import pandas as pd
11
+ from PIL import Image
12
+
13
+
14
+
15
+
16
  # Daftar model dan ControlNet
17
  models = ["Model A", "Model B", "Model C"]
18
  vae = ["VAE A", "VAE B", "VAE C"]
 
35
  return f"Proses gambar dengan ControlNet '{controlnet_type}' dan model '{model}'"
36
 
37
  #wd tagger
38
+
39
  # Dataset v3 series of models:
40
  SWINV2_MODEL_DSV3_REPO = "SmilingWolf/wd-swinv2-tagger-v3"
41
  CONV_MODEL_DSV3_REPO = "SmilingWolf/wd-convnext-tagger-v3"
 
50
  CONV2_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-convnextv2-tagger-v2"
51
  VIT_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-vit-tagger-v2"
52
 
53
+ # Files to download from the repos
54
+ MODEL_FILENAME = "model.onnx"
55
+ LABEL_FILENAME = "selected_tags.csv"
56
+
57
+ # https://github.com/toriato/stable-diffusion-webui-wd14-tagger/blob/a9eacb1eff904552d3012babfa28b57e1d3e295c/tagger/ui.py#L368
58
+ kaomojis = [ "0_0", "(o)_(o)", "+_+", "+_-", "._.", "<o>_<o>", "<|>_<|>", "=_=", ">_<", "3_3", "6_9", ">_o", "@_@", "^_^", "o_o", "u_u", "x_x", "|_|", "||_||", ]
59
+
60
+ def parse_args() -> argparse.Namespace:
61
+ parser = argparse.ArgumentParser()
62
+ parser.add_argument("--score-slider-step", type=float, default=0.05)
63
+ parser.add_argument("--score-general-threshold", type=float, default=0.35)
64
+ parser.add_argument("--score-character-threshold", type=float, default=0.85)
65
+ parser.add_argument("--share", action="store_true")
66
+ return parser.parse_args()
67
+
68
+
69
+ def load_labels(dataframe) -> list[str]:
70
+ name_series = dataframe["name"]
71
+ name_series = name_series.map(
72
+ lambda x: x.replace("_", " ") if x not in kaomojis else x
73
+ )
74
+ tag_names = name_series.tolist()
75
+
76
+ rating_indexes = list(np.where(dataframe["category"] == 9)[0])
77
+ general_indexes = list(np.where(dataframe["category"] == 0)[0])
78
+ character_indexes = list(np.where(dataframe["category"] == 4)[0])
79
+ return tag_names, rating_indexes, general_indexes, character_indexes
80
+
81
+
82
+ def mcut_threshold(probs):
83
+ """
84
+ Maximum Cut Thresholding (MCut)
85
+ Largeron, C., Moulin, C., & Gery, M. (2012). MCut: A Thresholding Strategy
86
+ for Multi-label Classification. In 11th International Symposium, IDA 2012
87
+ (pp. 172-183).
88
+ """
89
+ sorted_probs = probs[probs.argsort()[::-1]]
90
+ difs = sorted_probs[:-1] - sorted_probs[1:]
91
+ t = difs.argmax()
92
+ thresh = (sorted_probs[t] + sorted_probs[t + 1]) / 2
93
+ return thresh
94
+
95
+
96
+ class Predictor:
97
+ def __init__(self):
98
+ self.model_target_size = None
99
+ self.last_loaded_repo = None
100
+
101
+ def download_model(self, model_repo):
102
+ csv_path = huggingface_hub.hf_hub_download(
103
+ model_repo,
104
+ LABEL_FILENAME,
105
+ )
106
+ model_path = huggingface_hub.hf_hub_download(
107
+ model_repo,
108
+ MODEL_FILENAME,
109
+ )
110
+ return csv_path, model_path
111
+
112
+ def load_model(self, model_repo):
113
+ if model_repo == self.last_loaded_repo:
114
+ return
115
+
116
+ csv_path, model_path = self.download_model(model_repo)
117
+
118
+ tags_df = pd.read_csv(csv_path)
119
+ sep_tags = load_labels(tags_df)
120
+
121
+ self.tag_names = sep_tags[0]
122
+ self.rating_indexes = sep_tags[1]
123
+ self.general_indexes = sep_tags[2]
124
+ self.character_indexes = sep_tags[3]
125
+
126
+ model = rt.InferenceSession(model_path)
127
+ _, height, width, _ = model.get_inputs()[0].shape
128
+ self.model_target_size = height
129
+
130
+ self.last_loaded_repo = model_repo
131
+ self.model = model
132
+
133
+ def prepare_image(self, image):
134
+ target_size = self.model_target_size
135
+
136
+ canvas = Image.new("RGBA", image.size, (255, 255, 255))
137
+ canvas.alpha_composite(image)
138
+ image = canvas.convert("RGB")
139
+
140
+ # Pad image to square
141
+ image_shape = image.size
142
+ max_dim = max(image_shape)
143
+ pad_left = (max_dim - image_shape[0]) // 2
144
+ pad_top = (max_dim - image_shape[1]) // 2
145
+
146
+ padded_image = Image.new("RGB", (max_dim, max_dim), (255, 255, 255))
147
+ padded_image.paste(image, (pad_left, pad_top))
148
+
149
+ # Resize
150
+ if max_dim != target_size:
151
+ padded_image = padded_image.resize(
152
+ (target_size, target_size),
153
+ Image.BICUBIC,
154
+ )
155
+
156
+ # Convert to numpy array
157
+ image_array = np.asarray(padded_image, dtype=np.float32)
158
+
159
+ # Convert PIL-native RGB to BGR
160
+ image_array = image_array[:, :, ::-1]
161
+
162
+ return np.expand_dims(image_array, axis=0)
163
+
164
+
165
+ def predict(
166
+ self,
167
+ image,
168
+ model_repo,
169
+ general_thresh,
170
+ general_mcut_enabled,
171
+ character_thresh,
172
+ character_mcut_enabled,
173
+ ):
174
+ self.load_model(model_repo)
175
+
176
+ image = self.prepare_image(image)
177
+
178
+ input_name = self.model.get_inputs()[0].name
179
+ label_name = self.model.get_outputs()[0].name
180
+ preds = self.model.run([label_name], {input_name: image})[0]
181
+
182
+ labels = list(zip(self.tag_names, preds[0].astype(float)))
183
+
184
+ # First 4 labels are actually ratings: pick one with argmax
185
+ ratings_names = [labels[i] for i in self.rating_indexes]
186
+ rating = dict(ratings_names)
187
+
188
+ # Then we have general tags: pick any where prediction confidence > threshold
189
+ general_names = [labels[i] for i in self.general_indexes]
190
+
191
+ if general_mcut_enabled:
192
+ general_probs = np.array([x[1] for x in general_names])
193
+ general_thresh = mcut_threshold(general_probs)
194
+
195
+ general_res = [x for x in general_names if x[1] > general_thresh]
196
+ general_res = dict(general_res)
197
+
198
+ # Everything else is characters: pick any where prediction confidence > threshold
199
+ character_names = [labels[i] for i in self.character_indexes]
200
+
201
+ if character_mcut_enabled:
202
+ character_probs = np.array([x[1] for x in character_names])
203
+ character_thresh = mcut_threshold(character_probs)
204
+ character_thresh = max(0.15, character_thresh)
205
+
206
+ character_res = [x for x in character_names if x[1] > character_thresh]
207
+ character_res = dict(character_res)
208
+
209
+ sorted_general_strings = sorted(
210
+ general_res.items(),
211
+ key=lambda x: x[1],
212
+ reverse=True,
213
+ )
214
+ sorted_general_strings = [x[0] for x in sorted_general_strings]
215
+ sorted_general_strings = (
216
+ ", ".join(sorted_general_strings).replace("(", "\(").replace(")", "\)")
217
+ )
218
+
219
+ return sorted_general_strings, rating, character_res, general_res
220
+
221
+
222
+ def main():
223
+ args = parse_args()
224
+
225
+ predictor = Predictor()
226
+
227
+ dropdown_list = [
228
  SWINV2_MODEL_DSV3_REPO,
229
  CONV_MODEL_DSV3_REPO,
230
  VIT_MODEL_DSV3_REPO,
 
235
  CONV_MODEL_DSV2_REPO,
236
  CONV2_MODEL_DSV2_REPO,
237
  VIT_MODEL_DSV2_REPO,
238
+ ]
239
 
240
  with gr.Blocks(css= "style.css") as app:
241
  # Dropdown untuk memilih model di luar tab dengan lebar kecil