dalaix-flowerr / app.py
Dalaix703's picture
Update app.py
7a6f245 verified
raw
history blame contribute delete
515 Bytes
from transformers import pipeline
import gradio as gr
import numpy as np
# Function to classify images into 7 classes
def image_classifier(inp):
confidence_scores = np.random.rand(5)
confidence_scores /= np.sum(confidence_scores)
classes = ['crocus', 'daffodil', 'daisy', 'dandelion', 'fritillary']
result = {classes[i]: confidence_scores[i] for i in range(5)}
return result
# Creating Gradio interface
demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label")
demo.launch(share=True)