Daksh0505's picture
Update app.py
1ffbe4f verified
import streamlit as st
import tensorflow as tf
import json
import joblib
import numpy as np
import pandas as pd
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.preprocessing.text import Tokenizer
from datetime import datetime
import os
import gspread
from google.oauth2.service_account import Credentials
from tensorflow.keras.models import load_model
from huggingface_hub import hf_hub_download
from tensorflow.keras.preprocessing.text import tokenizer_from_json
def save_to_google_sheet(data):
scope = [
"https://spreadsheets.google.com/feeds",
"https://www.googleapis.com/auth/drive"
]
creds_dict = json.loads(st.secrets["gcp_credentials"]) # Converts string to dict
# Handle multiline private key properly
if "private_key" in creds_dict:
creds_dict["private_key"] = creds_dict["private_key"].replace("\\n", "\n")
# Authenticate and connect
creds = Credentials.from_service_account_info(creds_dict, scopes=scope)
client = gspread.authorize(creds)
sheet = client.open("Sentiment Feedback Log").sheet1
# Append row
sheet.append_row([
data.get("timestamp", ""),
data.get("username", ""),
data.get("user_id", ""),
data.get("text", ""),
data.get("model_a", ""),
data.get("model_b", ""),
data.get("ensemble", ""),
data.get("feedback", "")
])
st.set_page_config(page_title="Sentiment Model Comparison", layout="wide")
st.title("๐Ÿ“Š Sentiment Classifier Comparison")
# --- Load models and tokenizers ---
@st.cache_resource
def load_model_and_tokenizer(model_file, tokenizer_file):
model_path = hf_hub_download(repo_id="Daksh0505/sentiment-model-imdb", filename=model_file)
tokenizer_path = hf_hub_download(repo_id="Daksh0505/sentiment-model-imdb", filename=tokenizer_file)
with open(tokenizer_path, "r") as f:
tokenizer = tokenizer_from_json(f.read())
model = load_model(model_path)
return model, tokenizer
# === Load Cached Models ===
model_a, tokenizer_a = load_model_and_tokenizer("sentiment_model_imdb_6.6M.keras", "tokenizer_50k.json") # 6.6M params & 50K vocab
model_b, tokenizer_b = load_model_and_tokenizer("sentiment_model_imdb_34M.keras", "tokenizer_256k.json") # 34M params & 256K vocab
# --- Constants ---
maxlen = 300
labels = ["Negative", "Neutral", "Positive"]
# --- Preprocess ---
def preprocess(text, tokenizer):
text = text.lower()
seq = tokenizer.texts_to_sequences([text])
padded = pad_sequences(seq, maxlen=maxlen, padding='post')
return padded
# --- Format Output ---
def format_probs(probs):
return {labels[i]: f"{probs[i]*100:.2f}%" for i in range(3)}
# --- Text Input ---
st.markdown("### ๐Ÿ“ Enter a review:")
text = st.text_area("", height=150)
# --- File Upload ---
st.markdown("---")
file = st.file_uploader("๐Ÿ“‚ Or upload a CSV file with a 'review' column for bulk analysis", type=["csv"])
# Optional: User identification
user_name = st.text_input("๐Ÿ” Enter your name:")
user_id = st.text_input("๐Ÿ” Enter your email (optional):")
pred_a = pred_b = ensemble_label = None
if st.button("๐Ÿ” Analyze") and (text.strip() or file):
if text.strip():
padded_a = preprocess(text, tokenizer_a)
padded_b = preprocess(text, tokenizer_b)
pred_a = model_a.predict(padded_a)[0]
pred_b = model_b.predict(padded_b)[0]
ensemble_pred = (pred_a + pred_b) / 2
ensemble_label = labels[int(ensemble_pred.argmax())]
col1, col2, col3 = st.columns(3)
with col1:
st.subheader("๐Ÿ”น Model A")
st.caption("๐Ÿง  6M Parameters | ๐Ÿ“– 50k Vocab")
st.markdown(" | ".join([f"**{l}:** {v}" for l, v in format_probs(pred_a).items()]))
st.write(f"โ†’ **Predicted:** _{labels[int(pred_a.argmax())]}_")
with col2:
st.subheader("๐Ÿ”ธ Model B")
st.caption("๐Ÿง  34M Parameters | ๐Ÿ“– 256k Vocab")
st.markdown(" | ".join([f"**{l}:** {v}" for l, v in format_probs(pred_b).items()]))
st.write(f"โ†’ **Predicted:** _{labels[int(pred_b.argmax())]}_")
with col3:
st.subheader("โš–๏ธ Ensemble Average")
st.caption("๐Ÿงฎ Averaged Output (A + B)")
st.markdown(" | ".join([f"**{l}:** {v}" for l, v in format_probs(ensemble_pred).items()]))
st.write(f"โ†’ **Final Sentiment:** โœ… _{ensemble_label}_")
st.markdown("### ๐Ÿ“ˆ Confidence Comparison")
st.bar_chart({
"Model A": pred_a,
"Model B": pred_b,
"Ensemble": ensemble_pred
})
if file:
df = pd.read_csv(file)
if 'review' not in df.columns:
st.error("CSV must contain a 'review' column.")
else:
preds = []
for text in df['review']:
padded_a = preprocess(text, tokenizer_a)
padded_b = preprocess(text, tokenizer_b)
pred_a = model_a.predict(padded_a)[0]
pred_b = model_b.predict(padded_b)[0]
ensemble = (pred_a + pred_b) / 2
preds.append(labels[int(ensemble.argmax())])
df['Predicted Sentiment'] = preds
st.dataframe(df)
st.download_button("๐Ÿ“ฅ Download Results", df.to_csv(index=False), file_name="sentiment_predictions.csv")
# --- Info Panel ---
with st.expander("โ„น๏ธ Model Details"):
st.markdown("""
- **Model A**: Smaller model, faster, trained on 50k vocab.
- **Model B**: Larger model, more accurate, trained on 256k vocab.
- Ensemble averages predictions from both.
""")
# --- Feedback ---
st.markdown("---")
st.markdown("### ๐Ÿ’ฌ Feedback")
feedback = st.radio("Was the prediction helpful?", ["๐Ÿ‘ Yes", "๐Ÿ‘Ž No", "No comment"], horizontal=True)
if feedback and (user_name.strip() or user_id.strip() or text.strip()):
st.success("Thanks for your feedback! โœ…")
feedback_data = {
"timestamp": datetime.now().isoformat(),
"username": user_name,
"user_id": user_id,
"text": text if text else None,
"model_a": labels[int(pred_a.argmax())] if pred_a is not None else None,
"model_b": labels[int(pred_b.argmax())] if pred_b is not None else None,
"ensemble": ensemble_label if ensemble_label is not None else None,
"feedback": feedback if feedback != "No comment" else None,
}
# Save to local CSV
log_path = "user_feedback.csv"
feedback_df = pd.DataFrame([feedback_data])
if not os.path.exists(log_path):
feedback_df.to_csv(log_path, index=False)
else:
feedback_df.to_csv(log_path, mode='a', header=False, index=False)
# Save to Google Sheets
try:
save_to_google_sheet(feedback_data)
except Exception as e:
st.error(f'Error saving feedback to Google Sheets: {e}')