Spaces:
Sleeping
Sleeping
Mark 1 app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,191 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
)
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
)
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
+
from langchain.document_loaders import WebBaseLoader
|
4 |
+
from langchain_community.vectorstores import FAISS
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain.chains import ConversationalRetrievalChain
|
7 |
+
from langchain.chains import ConversationChain
|
8 |
+
from langchain.memory import ConversationBufferMemory
|
9 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
10 |
+
from langchain_community.embeddings import OllamaEmbeddings
|
11 |
+
from langchain_ollama import ChatOllama
|
12 |
+
import re
|
13 |
+
import torch
|
14 |
+
|
15 |
+
|
16 |
+
def preprocessing_text(document: list) -> list:
|
17 |
+
document[0].page_content = re.sub(r"\n{2,}", "\n\n", document[0].page_content)
|
18 |
+
return document
|
19 |
+
|
20 |
+
def loading_the_webpage(url: str) -> list:
|
21 |
+
loader = WebBaseLoader(url)
|
22 |
+
document = preprocessing_text(loader.load())
|
23 |
+
return document
|
24 |
+
|
25 |
+
|
26 |
+
def chunking(document: list) -> list:
|
27 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size= 1024,
|
28 |
+
chunk_overlap= 128,
|
29 |
+
separators= ["\n\n", "\n", " ", ""])
|
30 |
+
return text_splitter.split_documents(documents= document)
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
def create_vector_db(chunked_documents):
|
35 |
+
embeddings = OllamaEmbeddings(model= 'nomic-embed-text', show_progress= True)
|
36 |
+
vector_db = FAISS.from_documents(chunked_documents, embeddings)
|
37 |
+
return vector_db
|
38 |
+
|
39 |
+
|
40 |
+
# Initialize langchain LLM chain
|
41 |
+
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
42 |
+
llm = ChatOllama(model= "mistral",
|
43 |
+
temperature= temperature,
|
44 |
+
top_k= top_k,
|
45 |
+
num_predict= max_tokens)
|
46 |
+
|
47 |
+
memory = ConversationBufferMemory(
|
48 |
+
memory_key="chat_history",
|
49 |
+
output_key='answer',
|
50 |
+
return_messages=True
|
51 |
+
)
|
52 |
+
|
53 |
+
retriever=vector_db.as_retriever()
|
54 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
55 |
+
llm,
|
56 |
+
retriever=retriever,
|
57 |
+
chain_type="stuff",
|
58 |
+
memory=memory,
|
59 |
+
return_source_documents=True,
|
60 |
+
verbose=False,
|
61 |
+
)
|
62 |
+
return qa_chain
|
63 |
+
|
64 |
+
def process_url_and_query(url: str, query: str):
|
65 |
+
# Load and process the webpage
|
66 |
+
documents = loading_the_webpage(url)
|
67 |
+
documents = preprocessing_text(documents)
|
68 |
+
|
69 |
+
# Chunk the documents
|
70 |
+
chunked_documents = chunking(documents)
|
71 |
+
|
72 |
+
# Create a vector database from chunked documents
|
73 |
+
vector_db = create_vector_db(chunked_documents)
|
74 |
+
|
75 |
+
# Initialize the LLM chain
|
76 |
+
qa_chain = initialize_llmchain(llm_model="mistral", temperature=0.7, max_tokens=150, top_k=5, vector_db=vector_db)
|
77 |
+
|
78 |
+
# Get the answer for the user's query
|
79 |
+
answer = qa_chain({"question": query})
|
80 |
+
|
81 |
+
return answer['answer']
|
82 |
+
|
83 |
+
with gr.Blocks() as demo:
|
84 |
+
gr.Markdown("# Webpage Querying App")
|
85 |
+
|
86 |
+
url_input = gr.Textbox(label="Enter URL")
|
87 |
+
query_input = gr.Textbox(label="Enter your query")
|
88 |
+
|
89 |
+
submit_button = gr.Button("Submit")
|
90 |
+
|
91 |
+
output_textbox = gr.Textbox(label="Response", interactive=False)
|
92 |
+
|
93 |
+
submit_button.click(process_url_and_query, inputs=[url_input, query_input], outputs=output_textbox)
|
94 |
+
|
95 |
+
# Launch the app
|
96 |
+
demo.launch()
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
|
127 |
+
|
128 |
+
# import gradio as gr
|
129 |
+
# from huggingface_hub import InferenceClient
|
130 |
+
|
131 |
+
# """
|
132 |
+
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
133 |
+
# """
|
134 |
+
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
135 |
+
|
136 |
+
|
137 |
+
# def respond(
|
138 |
+
# message,
|
139 |
+
# history: list[tuple[str, str]],
|
140 |
+
# system_message,
|
141 |
+
# max_tokens,
|
142 |
+
# temperature,
|
143 |
+
# top_p,
|
144 |
+
# ):
|
145 |
+
# messages = [{"role": "system", "content": system_message}]
|
146 |
+
|
147 |
+
# for val in history:
|
148 |
+
# if val[0]:
|
149 |
+
# messages.append({"role": "user", "content": val[0]})
|
150 |
+
# if val[1]:
|
151 |
+
# messages.append({"role": "assistant", "content": val[1]})
|
152 |
+
|
153 |
+
# messages.append({"role": "user", "content": message})
|
154 |
+
|
155 |
+
# response = ""
|
156 |
+
|
157 |
+
# for message in client.chat_completion(
|
158 |
+
# messages,
|
159 |
+
# max_tokens=max_tokens,
|
160 |
+
# stream=True,
|
161 |
+
# temperature=temperature,
|
162 |
+
# top_p=top_p,
|
163 |
+
# ):
|
164 |
+
# token = message.choices[0].delta.content
|
165 |
+
|
166 |
+
# response += token
|
167 |
+
# yield response
|
168 |
+
|
169 |
+
|
170 |
+
# """
|
171 |
+
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
172 |
+
# """
|
173 |
+
# demo = gr.ChatInterface(
|
174 |
+
# respond,
|
175 |
+
# additional_inputs=[
|
176 |
+
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
177 |
+
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
178 |
+
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
179 |
+
# gr.Slider(
|
180 |
+
# minimum=0.1,
|
181 |
+
# maximum=1.0,
|
182 |
+
# value=0.95,
|
183 |
+
# step=0.05,
|
184 |
+
# label="Top-p (nucleus sampling)",
|
185 |
+
# ),
|
186 |
+
# ],
|
187 |
+
# )
|
188 |
+
|
189 |
+
|
190 |
+
# if __name__ == "__main__":
|
191 |
+
# demo.launch()
|