Dagobert42
commited on
Commit
•
00a6def
1
Parent(s):
125cf0c
add color annotated results, use new models
Browse files- app.py +12 -22
- helpers.py +31 -0
- requirements.txt +1 -0
app.py
CHANGED
@@ -1,41 +1,31 @@
|
|
1 |
import torch
|
2 |
import streamlit as st
|
3 |
-
from transformers import pipeline
|
4 |
from random import choice
|
|
|
|
|
5 |
|
6 |
with open("sentences.pt", 'rb') as f:
|
7 |
sentences = torch.load(f)
|
8 |
sentence = choice(sentences)
|
9 |
|
10 |
-
baseline_classifier = pipeline(
|
11 |
-
model="Dagobert42/mobilebert-uncased-biored-finetuned-ner",
|
12 |
-
task="ner",
|
13 |
-
aggregation_strategy="simple"
|
14 |
-
)
|
15 |
-
augmented_classifier = pipeline(
|
16 |
-
model="Dagobert42/mobilebert-uncased-biored-augmented-ner",
|
17 |
-
task="ner",
|
18 |
-
aggregation_strategy="simple"
|
19 |
-
)
|
20 |
-
|
21 |
st.title("Semantic Frame Augmentation")
|
22 |
-
st.
|
23 |
|
24 |
-
st.write("This space uses a
|
25 |
augment = st.toggle('Use augmented model for NER', value=False)
|
26 |
|
27 |
-
if augment:
|
28 |
-
st.write("with augmentation:")
|
29 |
-
tokens = augmented_classifier(sentence)
|
30 |
-
else:
|
31 |
-
st.write("without augmentation:")
|
32 |
-
tokens = baseline_classifier(sentence)
|
33 |
-
|
34 |
txt = st.text_area(
|
35 |
"Text to analyze",
|
36 |
sentence,
|
37 |
max_chars=500
|
38 |
)
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
st.subheader("Entity analysis:")
|
41 |
-
|
|
|
1 |
import torch
|
2 |
import streamlit as st
|
|
|
3 |
from random import choice
|
4 |
+
from annotated_text import annotated_text
|
5 |
+
from helpers import *
|
6 |
|
7 |
with open("sentences.pt", 'rb') as f:
|
8 |
sentences = torch.load(f)
|
9 |
sentence = choice(sentences)
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
st.title("Semantic Frame Augmentation")
|
12 |
+
st.subheader("Analysing difficult low-resource domains with only a handful of examples")
|
13 |
|
14 |
+
st.write("This space uses a google/mobilebert-uncased model for NER")
|
15 |
augment = st.toggle('Use augmented model for NER', value=False)
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
txt = st.text_area(
|
18 |
"Text to analyze",
|
19 |
sentence,
|
20 |
max_chars=500
|
21 |
)
|
22 |
|
23 |
+
if augment:
|
24 |
+
st.write("with augmentation:")
|
25 |
+
tokens = augmented_classifier(txt)
|
26 |
+
else:
|
27 |
+
st.write("without augmentation:")
|
28 |
+
tokens = baseline_classifier(txt)
|
29 |
+
|
30 |
st.subheader("Entity analysis:")
|
31 |
+
annotated_text(annotate_sentence(sentence, tokens))
|
helpers.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
|
3 |
+
baseline_classifier = pipeline("ner",
|
4 |
+
model="Dagobert42/biored-finetuned",
|
5 |
+
aggregation_strategy="simple"
|
6 |
+
)
|
7 |
+
augmented_classifier = pipeline("ner",
|
8 |
+
model="Dagobert42/biored-augmented",
|
9 |
+
aggregation_strategy="simple"
|
10 |
+
)
|
11 |
+
|
12 |
+
def annotate_sentence(sentence, predictions):
|
13 |
+
colors = {
|
14 |
+
'null': '#bfbfbf', # Pastel gray
|
15 |
+
'GeneOrGeneProduct': '#aad4aa', # Pastel green
|
16 |
+
'DiseaseOrPhenotypicFeature': '#f8b400', # Pastel orange
|
17 |
+
'ChemicalEntity': '#a4c2f4', # Pastel blue
|
18 |
+
'OrganismTaxon': '#ffb6c1', # Pastel pink
|
19 |
+
'SequenceVariant': '#e2b0ff', # Pastel purple
|
20 |
+
'CellLine': '#ffcc99' # Pastel peach
|
21 |
+
}
|
22 |
+
output = []
|
23 |
+
i = 0
|
24 |
+
for p in predictions:
|
25 |
+
if sentence[i:p['start']] != '':
|
26 |
+
output.append(sentence[i:p['start']])
|
27 |
+
output.append((p['word'], p['entity_group'], colors[p['entity_group']]))
|
28 |
+
i = p['end']
|
29 |
+
if sentence[p['end']:]:
|
30 |
+
output.append(sentence[p['end']:])
|
31 |
+
return output
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
streamlit
|
|
|
2 |
transformers
|
3 |
torch
|
|
|
1 |
streamlit
|
2 |
+
st-annotated-text
|
3 |
transformers
|
4 |
torch
|