Spaces:
Paused
Paused
Dagfinn1962
commited on
Commit
•
841ca51
1
Parent(s):
6436627
Update app.py
Browse files
app.py
CHANGED
@@ -1,45 +1,51 @@
|
|
1 |
import gradio as gr
|
2 |
-
import modin.pandas as pd
|
3 |
import torch
|
4 |
import numpy as np
|
|
|
5 |
from PIL import Image
|
6 |
-
from diffusers import DiffusionPipeline
|
7 |
-
from huggingface_hub import login
|
8 |
-
#import os
|
9 |
-
|
10 |
-
#login(token=os.environ.get('HF_KEY'))
|
11 |
-
|
12 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
14 |
-
pipe = pipe.to(device)
|
15 |
|
16 |
-
def resize(value,img):
|
17 |
-
img = Image.open(img)
|
18 |
-
img = img.resize((value,value))
|
19 |
-
return img
|
20 |
|
21 |
-
|
22 |
-
generator = torch.Generator(device).manual_seed(seed)
|
23 |
-
source_image = resize(768, source_img)
|
24 |
-
source_image.save('source.png')
|
25 |
-
image = pipe(prompt, negative_prompt=negative_prompt, image=source_image, strength=Strength, guidance_scale=guide, num_inference_steps=steps).images[0]
|
26 |
-
return image
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
+
import modin.pandas as pd
|
5 |
from PIL import Image
|
6 |
+
from diffusers import DiffusionPipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
if torch.cuda.is_available():
|
12 |
+
PYTORCH_CUDA_ALLOC_CONF={'max_split_size_mb': 6000}
|
13 |
+
torch.cuda.max_memory_allocated(device=device)
|
14 |
+
torch.cuda.empty_cache()
|
15 |
+
|
16 |
+
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
17 |
+
pipe.enable_xformers_memory_efficient_attention()
|
18 |
+
pipe = pipe.to(device)
|
19 |
+
torch.cuda.empty_cache()
|
20 |
+
|
21 |
+
else:
|
22 |
+
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", use_safetensors=True)
|
23 |
+
pipe = pipe.to(device)
|
24 |
+
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True)
|
25 |
+
refiner = refiner.to(device)
|
26 |
+
|
27 |
+
def genie (prompt, negative_prompt, height, width, scale, steps, seed, upscaling):
|
28 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
29 |
+
int_image = pipe(prompt, negative_prompt=negative_prompt, num_inference_steps=steps, height=height, width=width, guidance_scale=scale, num_images_per_prompt=1, generator=generator, output_type="latent").images
|
30 |
+
if upscaling == 'Yes':
|
31 |
+
image = refiner(prompt=prompt, image=int_image).images[0]
|
32 |
+
upscaled = upscaler(prompt=prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=5, guidance_scale=0).images[0]
|
33 |
+
torch.cuda.empty_cache()
|
34 |
+
return (image, upscaled)
|
35 |
+
else:
|
36 |
+
image = refiner(prompt=prompt, negative_prompt=negative_prompt, image=int_image).images[0]
|
37 |
+
torch.cuda.empty_cache()
|
38 |
+
return (image, image)
|
39 |
+
|
40 |
+
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit. A Token is Any Word, Number, Symbol, or Punctuation. Everything Over 77 Will Be Truncated!'),
|
41 |
+
gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
|
42 |
+
gr.Slider(512, 1024, 768, step=128, label='Height'),
|
43 |
+
gr.Slider(512, 1024, 768, step=128, label='Width'),
|
44 |
+
gr.Slider(1, 15, 10, step=.25, label='Guidance Scale: How Closely the AI follows the Prompt'),
|
45 |
+
gr.Slider(25, maximum=100, value=50, step=25, label='Number of Iterations'),
|
46 |
+
gr.Slider(minimum=1, step=1, maximum=999999999999999999, randomize=True, label='Seed'),
|
47 |
+
gr.Radio(['Yes', 'No'], label='Upscale?')],
|
48 |
+
outputs=['image', 'image'],
|
49 |
+
title="Stable Diffusion XL 1.0 GPU",
|
50 |
+
description="SDXL 1.0 GPU. <br><br><b>WARNING: Capable of producing NSFW (Softcore) images.</b>",
|
51 |
+
article = "If You Enjoyed this Demo and would like to Donate, you can send to any of these Wallets. <br>BTC: bc1qzdm9j73mj8ucwwtsjx4x4ylyfvr6kp7svzjn84 <br>3LWRoKYx6bCLnUrKEdnPo3FCSPQUSFDjFP <br>DOGE: DK6LRc4gfefdCTRk9xPD239N31jh9GjKez <br>SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>PayPal: https://www.paypal.me/ManjushriBodhisattva <br>ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True, max_threads=80)
|