Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Update modules/visuals.py
Browse files- modules/visuals.py +20 -9
 
    	
        modules/visuals.py
    CHANGED
    
    | 
         @@ -4,14 +4,15 @@ import pandas as pd 
     | 
|
| 4 | 
         | 
| 5 | 
         
             
            def display_dashboard(df):
         
     | 
| 6 | 
         
             
                st.subheader("π System Summary")
         
     | 
| 7 | 
         
            -
                col1, col2, col3 = st.columns( 
     | 
| 8 | 
         
             
                col1.metric("Total Poles", df.shape[0])
         
     | 
| 9 | 
         
             
                col2.metric("π¨ Red Alerts", df[df['AlertLevel'] == "Red"].shape[0])
         
     | 
| 10 | 
         
             
                col3.metric("β‘ Power Issues", df[df['PowerSufficient'] == "No"].shape[0])
         
     | 
| 
         | 
|
| 11 | 
         | 
| 12 | 
         
             
            def display_charts(df):
         
     | 
| 13 | 
         
             
                st.subheader("βοΈ Energy Generation Trends")
         
     | 
| 14 | 
         
            -
                st.bar_chart(df. 
     | 
| 15 | 
         
             
                st.subheader("π Tilt vs Vibration")
         
     | 
| 16 | 
         
             
                st.scatter_chart(df.rename(columns={"Tilt(Β°)": "Tilt", "Vibration(g)": "Vibration"}).set_index("PoleID")[["Tilt", "Vibration"]])
         
     | 
| 17 | 
         | 
| 
         @@ -20,8 +21,18 @@ def display_heatmap(df): 
     | 
|
| 20 | 
         
             
                alert_map = {"Green": 0, "Yellow": 1, "Red": 2}
         
     | 
| 21 | 
         
             
                df["AlertValue"] = df["AlertLevel"].map(alert_map)
         
     | 
| 22 | 
         | 
| 23 | 
         
            -
                #  
     | 
| 24 | 
         
            -
                pivot_df = df 
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 25 | 
         | 
| 26 | 
         
             
                # Create heatmap using Plotly
         
     | 
| 27 | 
         
             
                fig = px.imshow(
         
     | 
| 
         @@ -29,14 +40,14 @@ def display_heatmap(df): 
     | 
|
| 29 | 
         
             
                    color_continuous_scale=["green", "yellow", "red"],
         
     | 
| 30 | 
         
             
                    zmin=0,
         
     | 
| 31 | 
         
             
                    zmax=2,
         
     | 
| 32 | 
         
            -
                     
     | 
| 33 | 
         
            -
                     
     | 
| 34 | 
         
            -
                    height= 
     | 
| 35 | 
         
             
                )
         
     | 
| 
         | 
|
| 36 | 
         
             
                fig.update_layout(
         
     | 
| 37 | 
         
             
                    xaxis_title="Pole ID",
         
     | 
| 38 | 
         
            -
                    yaxis_title="",
         
     | 
| 39 | 
         
            -
                    yaxis_showticklabels=False,
         
     | 
| 40 | 
         
             
                    coloraxis_colorbar=dict(
         
     | 
| 41 | 
         
             
                        tickvals=[0, 1, 2],
         
     | 
| 42 | 
         
             
                        ticktext=["Green", "Yellow", "Red"]
         
     | 
| 
         | 
|
| 4 | 
         | 
| 5 | 
         
             
            def display_dashboard(df):
         
     | 
| 6 | 
         
             
                st.subheader("π System Summary")
         
     | 
| 7 | 
         
            +
                col1, col2, col3, col4 = st.columns(4)
         
     | 
| 8 | 
         
             
                col1.metric("Total Poles", df.shape[0])
         
     | 
| 9 | 
         
             
                col2.metric("π¨ Red Alerts", df[df['AlertLevel'] == "Red"].shape[0])
         
     | 
| 10 | 
         
             
                col3.metric("β‘ Power Issues", df[df['PowerSufficient'] == "No"].shape[0])
         
     | 
| 11 | 
         
            +
                col4.metric("π Locations", len(df['Location'].unique()))
         
     | 
| 12 | 
         | 
| 13 | 
         
             
            def display_charts(df):
         
     | 
| 14 | 
         
             
                st.subheader("βοΈ Energy Generation Trends")
         
     | 
| 15 | 
         
            +
                st.bar_chart(df.groupby("Location")[["SolarGen(kWh)", "WindGen(kWh)"]].sum())
         
     | 
| 16 | 
         
             
                st.subheader("π Tilt vs Vibration")
         
     | 
| 17 | 
         
             
                st.scatter_chart(df.rename(columns={"Tilt(Β°)": "Tilt", "Vibration(g)": "Vibration"}).set_index("PoleID")[["Tilt", "Vibration"]])
         
     | 
| 18 | 
         | 
| 
         | 
|
| 21 | 
         
             
                alert_map = {"Green": 0, "Yellow": 1, "Red": 2}
         
     | 
| 22 | 
         
             
                df["AlertValue"] = df["AlertLevel"].map(alert_map)
         
     | 
| 23 | 
         | 
| 24 | 
         
            +
                # Pivot table: Locations as rows, Poles as columns
         
     | 
| 25 | 
         
            +
                pivot_df = df.pivot_table(index="Location", columns="PoleID", values="AlertValue", fill_value=0)
         
     | 
| 26 | 
         
            +
                
         
     | 
| 27 | 
         
            +
                # Create hover text with PoleID, AlertLevel, and Anomalies
         
     | 
| 28 | 
         
            +
                hover_df = df.pivot_table(index="Location", columns="PoleID", values=["PoleID", "AlertLevel", "Anomalies"], aggfunc="first")
         
     | 
| 29 | 
         
            +
                hover_text = pivot_df.copy()
         
     | 
| 30 | 
         
            +
                for loc in pivot_df.index:
         
     | 
| 31 | 
         
            +
                    for pole in pivot_df.columns:
         
     | 
| 32 | 
         
            +
                        if pole in hover_df.loc[loc, "PoleID"].columns:
         
     | 
| 33 | 
         
            +
                            alert = hover_df.loc[loc, ("AlertLevel", pole)] if pd.notna(hover_df.loc[loc, ("AlertLevel", pole)]) else "None"
         
     | 
| 34 | 
         
            +
                            anomalies = hover_df.loc[loc, ("Anomalies", pole)] if pd.notna(hover_df.loc[loc, ("Anomalies", pole)]) else "None"
         
     | 
| 35 | 
         
            +
                            hover_text.loc[loc, pole] = f"Pole: {pole}<br>Alert: {alert}<br>Anomalies: {anomalies}"
         
     | 
| 36 | 
         | 
| 37 | 
         
             
                # Create heatmap using Plotly
         
     | 
| 38 | 
         
             
                fig = px.imshow(
         
     | 
| 
         | 
|
| 40 | 
         
             
                    color_continuous_scale=["green", "yellow", "red"],
         
     | 
| 41 | 
         
             
                    zmin=0,
         
     | 
| 42 | 
         
             
                    zmax=2,
         
     | 
| 43 | 
         
            +
                    title="Pole Alert Heatmap by Location",
         
     | 
| 44 | 
         
            +
                    text_auto=False,
         
     | 
| 45 | 
         
            +
                    height=500
         
     | 
| 46 | 
         
             
                )
         
     | 
| 47 | 
         
            +
                fig.update_traces(hovertemplate="%{customdata}<br>%{x}<br>%{y}", customdata=hover_text)
         
     | 
| 48 | 
         
             
                fig.update_layout(
         
     | 
| 49 | 
         
             
                    xaxis_title="Pole ID",
         
     | 
| 50 | 
         
            +
                    yaxis_title="Location",
         
     | 
| 
         | 
|
| 51 | 
         
             
                    coloraxis_colorbar=dict(
         
     | 
| 52 | 
         
             
                        tickvals=[0, 1, 2],
         
     | 
| 53 | 
         
             
                        ticktext=["Green", "Yellow", "Red"]
         
     |